Glycosmis is a clearly defined genus within the tribe Clauseneae of the Aurantioideae subfamily of the family Rutaceae comprising about 40 species (1). Its range of distribution is centered in south and southeast Asia (India, Sri Lanka, Myanmar, Thailand, Malaysia, Indonesia) and extends to south China and Taiwan as well as to New Guinea and north Australia. Exceptions are only cultivated species like the Chinese G. parviflora (Sims) Little, formerly called G. citrifolia (Willd.) Lindley, which became naturalized in tropical America and Africa (Angola) (1). The shrubs or small trees are unarmed and possess pinnate or simple leaves with translucent punctate glands emitting an aromatic odor when crushed. The axillary inflorescences are usually dispersed closed panicles with small white flowers. The fruits are mostly pink, reddish or white berries of about 1 cm in diameter with only one or two seeds. The genus name Glycosmis originates from the sweet smell of the flowers and the sweet taste of the fleshy pericarp of the fruits. A good field and herbarium character of the genus is that the buds of new leaves are usually covered with short rusty-red hairs. In spite of the good delimitation of Glycosmis from the other closely related Clauseneae genera Clausena, Micromelum, Murraya and Merrillia and the already existing subrevisionary treatment by Stone (7), there are still many unresolved taxonomic problems at the species level. Due to the pronounced variability in foliage, usually the ovular locule numbers and/or the flower characters are required for proper species delimitation of Glycosmis. Consequently, phytochemical analyses have often been based on improperly identified plant material.


Propenoic Acid Acid Amide Root Bark Carbazole Alkaloid Acridone Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stone BC (1985) A Conspectus of the Genus Glycosmis Correa-Studies in Malesian Rutaceae, III. Proc Akad Nat Sci Philadelphia, 137: 1Google Scholar
  2. 2.
    Waterman PG, Grundon MF (1983) Chemistry and Chemical Taxonomy of the Rutales. London New York, Academic PressGoogle Scholar
  3. 3a.
    Hegenauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser, Basel Stuttgart;Google Scholar
  4. 3b.
    Chemotaxonomie der Pflanzen, vol 9. Birkhäuser, Basel Boston BerlinGoogle Scholar
  5. 4.
    Rastogi K, Kapil RS, Popli SP (1980) New Alkaloids from Glycosmis mauritiana. Phytochemistry 19: 945CrossRefGoogle Scholar
  6. 5.
    Bhattacharyya P, Chowdhury BK (1985) Glycolone, a Quinoline Alkaloid from Glycosmis pentaphylla. Phytochemistry 24: 634CrossRefGoogle Scholar
  7. 6.
    Das BP, Chowdhury BK (1978) Glycosolone: A New Quinolone Alkaloid from Glycosmis pentaphylla (Retz) DC. Chem Ind 1978: 272Google Scholar
  8. 7.
    Kumar P, Das BP, Sinha SKP (1986) Homo-glycosolone: A New Quinolone Alkaloid from Glycosmis pentaphylla (Retz) DC. Chem Ind 1986: 669Google Scholar
  9. 8.
    Bowen IA, Perera KPWC, Lewis JR (1980) Alkaloids from the Stem of Glycosmis bilocularis (Rutaceae). Phytochemistry 19: 1566Google Scholar
  10. 9.
    Govindachari TR, Pai BR, Subramaniam PS (1966) Alkaloids of Glycosmis pentaphylla (Retz) Correa. Tetrahedron 22: 3245CrossRefGoogle Scholar
  11. 10.
    Wu T-S, Furukawa H (1982) Acridone Alkaloids IV. Structures of Four New Acridone Alkaloids from Glycosmis citrifolia (WilId.) Lindl. Heterocycles 19: 1047CrossRefGoogle Scholar
  12. 11.
    Wu T-S, Furukawa H, Hsu KS (1982) New Furo-and Pyranoacridone Alkaloids from Glycosmis citrifolia (Willd.) Lindl Heterocycles 19: 1227Google Scholar
  13. 12.
    Wu T-S, Furukawa H, Kuoh CS, Hsu KS (1983) Acridone Alkaloids, Part 9. Chemical Constituents of Glycosmis citrifolia (Willd.) Lindl. Structures of Novel Linear Pyranoacridones, Furoacridones, and other New Acridone Alkaloids. J Chem Soc Perkin Trans I, 1681Google Scholar
  14. 13.
    Furukawa H, Ito C, Ono T, Wu T-S, Kuoh CS (1993) Spectroscopic Elucidation of Glycobismines, First Naturally Occurring Binary Acridone Alkaloids Containing a Carbon-Carbon Linkage. J Chem Soc Perkin I, 471Google Scholar
  15. 14.
    Ono T, Ito C, Furukawa H, Wu T-S, Kuoh CS, Hsu KS (1995) Two New Acridone Alkaloids from Glycosmis Species. J Nat Prod 58: 1629CrossRefGoogle Scholar
  16. 15.
    Bhattacharyya P, Chakrabartty PK, Chowdhury BK (1985) Glycozolidol, an Antibacterial Carbazole Alkaloid from Glycosmis pentaphylla. Phytochemistry 24: 882CrossRefGoogle Scholar
  17. 16.
    Kumar V, Reisch J, Wickramasinghe A (1989) Glycomaurin and Glycomaurrol, New Carbazole Alkaloids from Glycosmis mauritiana (Rutaceae) Bark. Aust J Chem 42: 1375CrossRefGoogle Scholar
  18. 17a.
    Chakraborty DP (1977) Carbazole Alkaloids. In: Herz W, Grisebach H, Kirby GW (eds) Progress in Chemistry of Organic Natural Products, vol. 34. Springer, Wien New York, p 299;Google Scholar
  19. 17b.
    Bhattacharyya P, Chakraborty DP (1987) Carbazole Alkaloids II. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol. 52. Springer, Wien New York, p 159;Google Scholar
  20. 17c.
    Chakraborty DP, Shymali Roy (1991) Carbazole Alkaloids III. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol 57. Springer, Wien New York, p 71CrossRefGoogle Scholar
  21. 18.
    Josh SS, Biswas GK, Bhattacharyya SK, Bhattacharyya P, Chakraborty A, Chowdhury BK (1992) Carbazole Alkaloids from Glycosmis pentaphylla. Phytochemistry 31: 2503CrossRefGoogle Scholar
  22. 19.
    Sarkar M, Chakraborty DP (1977) Chemical Taxonomy, Part 40. Some Minor Constituents from Glycosmis pentaphylla. Phytochemistry 16: 2007Google Scholar
  23. 20.
    Sarkar M, Chakraborty DP (1979) Chemical Taxonomy, Part 45. Glycophymoline, a New Minor Quinazoline Alkaloid from Glycosmis pentaphylla. Phytochemistry 18: 694CrossRefGoogle Scholar
  24. 21.
    Johne S (1984) The Quinazoline Alkaloids. In: Herz W, Grisebach H, Kirby GW, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol 46. Springer, Wien New York, p 159CrossRefGoogle Scholar
  25. 22.
    Seger C, Vajrodaya S, Greger H, Hofer O (1998) Structure Elucidation and Synthesis of a New Bioactive Quinazolone Derivative from Glycosmis cf. chlorosperma. Chem Pharm Bull 46: 1926CrossRefGoogle Scholar
  26. 23.
    Chakravarty AK, Das B, Masuda K, Ageta H (1996) Tetracyclic Triterpenoids from Glycosmis arborea. Phytochemistry 42: 1109CrossRefGoogle Scholar
  27. 24.
    Chakravarty AK, Das B, Masuda K, Ageta H (1996) Glycoric Acid Possessing a New 10-Normegastigmane Skeleton from Glycosmis arborea. Chem Pharm Bull 44: 1421CrossRefGoogle Scholar
  28. 25.
    Kiyotani T, Masuda K, Ageta H, Chakravarty AK, Das B (1996) Glycoric Acid, a New Degraded Carotenoid from Glycosmis arborea. Acta Crystallogr Sect C Cryst Struct Commun C52: 3216CrossRefGoogle Scholar
  29. 26.
    Seger C, Jandl B, Brader G, Robien W, Hofer O, Greger H (1997) Case studies of CSEARCH Supported Structure Elucidation Strategies: Lupeol and a New Germacrane Derivative. Fresenius J Anal Chem 359: 42CrossRefGoogle Scholar
  30. 27.
    Seger C, Vajrodaya S, Hofer O, Greger H (1998) Two New Nor-Diterpenes from Glycosmis cf. cyanocarpa. Nat Prod Lett 12: 117CrossRefGoogle Scholar
  31. 28.
    Wu T-S, Chang F-C, Wu PL (1995) Flavonoids, Amidosulfoxides and an Alkaloid from the Leaves of Glycosmis citrifolia. Phytochemistry 39: 1453CrossRefGoogle Scholar
  32. 29.
    Greger H, Hofer O (unpublished results)Google Scholar
  33. 30.
    Dadson BA, Minta A (1976) Isolation, Identification, and Synthesis of Rubesamide, a New Naturally Occurring Cyclopropanecarboxamide from Fagara rubescens. J Chem Soc Perkin Trans I, 146Google Scholar
  34. 31.
    Li Q (1988) Chemistry and Systematic Studies on the Clauseneae of Rutaceae Ph.D. Thesis, Zhongshan University, Guangzhou, ChinaGoogle Scholar
  35. 32.
    Johns SR, Lamberton JA, Price JR (1967) (f)-N-Benzoyl[2-hydroxy-2-(4’-methoxyphenyl)-ethylamine from Clausena brevistyla Oliver (Family Rutaceae). Aust J Chem 20: 2795Google Scholar
  36. 33.
    Yang M-H, Chen Y-R, Liu G, Huang L (1988) Process for the Preparation of a New Pharmacologically Active Bicyclic Lactam and its Use in Medicine (Patent, Bayer A.-G., Chinese Academy of Medical Sciences, Ger. Offen. DE 3,700,706); CA 108: 37514vGoogle Scholar
  37. 34.
    Hartwig W, Born L (1997) Diastereoselective and Enantioselective Total Synthesis of the Hepatoprotective Agent Clausenamide. J Org Chem 52: 4352; see also Chen Y-R, Yang M-H, Huang L, Geng T (1986) Patent; CA. 105: 72689rGoogle Scholar
  38. 35.
    Riemer B, Hofer O. Greger H (1997) Tryptamine Derived Amides from Clausena indica. Phytochemistry 45: 337CrossRefGoogle Scholar
  39. 36.
    Sinhababu A, Thakur S (1995) Constituents of the Flower of Glrco.smi.s pentaphrl/a (Retz) Correa. Asian J Chem 7, 221; CA 122: 128671zGoogle Scholar
  40. 37.
    Greger H, Hofer O. Kählig H-P, Wurz G (1992) Sulfur-Containing Cinnamides with Antifungal Activity from Glrcosmis c.vanocarpa. Tetrahedron 48: 1209CrossRefGoogle Scholar
  41. 38.
    Greger H, Hadacek F, Hofer O, Wurz G, Zechner G (1993) Different Types of Sulfur-Containing Amides from Glrcosmis cf. chlorosperrna. Phytochemisty 32: 933CrossRefGoogle Scholar
  42. 39.
    Greger H, Zechner G, Hofer O. Hadacek F, Wurz G (1993) Sulphur-Containing Amides from Glrcosmis Species with Different Antifungal Activity. Phytochemistry 34: 175CrossRefGoogle Scholar
  43. 40.
    Greger H, Hofer O, Zechner G, Hadacek F, Wurz G (1994) Sulphones Derived from Methylthiopropenoic Acid Amides from Glrcosmis angusti/o/ia. Phytochemistry 37: 1305CrossRefGoogle Scholar
  44. 41.
    Hofer O, Zechner G, Wurz G, Hadacek F, Greger H (1995) Ritigalin, a New Thiocarbonic Acid Imide from G/veosmis Species. Monatsh Chem 126: 365CrossRefGoogle Scholar
  45. 42.
    Hofer O, Zechner G, Vajrodaya S, Lutz G, Greger H (1995) New Anthranilic and Methylsulfonylpropenoic Acid Amides from Thai Glrcosmi.s Species. Liebigs Ann Chem 1995: 1789Google Scholar
  46. 43.
    Greger H, Zechner G, Hofer O, Vajrodaya S (1996) Bioactive Amides from Glrcosmis Species. J Nat Prod 59: 1163CrossRefGoogle Scholar
  47. 44.
    Hofer O, Vajrodaya S, Greger H (1998) Phenethylamides With an Unusual 4-Oxo-2oxolenyl Terpenoid Side Chain from Glrcosmis Species. Monatsh Chem 129: 213Google Scholar
  48. 45.
    Vajrodaya S, Bacher M, Greger H, Hofer O (1998) Organ-specific Chemical Differences in Glrcosmis lrichanthera. Phytochemistry 48: 897CrossRefGoogle Scholar
  49. 46.
    Hofer O, Greger H, Lukaseder B, Vajrodaya S, Bacher M (2000) Prenylated Sulfonyl Amides from Glrcosmis Species. Phytochemistry 54: 207CrossRefGoogle Scholar
  50. 47a.
    Abe N, Onoda R, Shirahata K, Kato T, Woods MC, Kitahara Y, Ro K, Kurihara T (1968) The Structures of Bakkenolides-B, -C, and -D as determined by the use of Nuclear Overhauser Effect. Tetrahedron Lett 1968: 1993;Google Scholar
  51. 47b.
    Naya K, Hayashi M, Takagi I, Nakamura S, Kobayashi M (1972) Structural Elucidation of Sesquiterpene Lactones from Petasites japonicas. Bull Chem Soc Jap 45: 3673;CrossRefGoogle Scholar
  52. 47c.
    . Yaoita Y, Kikuchi M (1996) Constituents of the Rhizomes of Petasite.s japnnicus. Maxim. IX. Structures of New Dinor-Eremophilane Derivatives and New Eremophilenolides. Chem Pharm Bull 44: 1731;Google Scholar
  53. 47d.
    Tori M, Kawahara M, Sono M (1997) Novel Epoxyeremophilanolides, Eremopetasitenins Al, A2, BI, and B2, from Petasites japonicus. Tetrahedron Lett 38: 1965;CrossRefGoogle Scholar
  54. 47e.
    Tori M, Kawahara M, Sono M (1998) Eremophilane-Type Sesquiterpenes From Fresh Rhizomes of Petasites japnnicus. Phytochemistry 47: 401;CrossRefGoogle Scholar
  55. 47f.
    Wu T-S, Kao M-S, Wu P-L, Lin F-W, Shi L-S, Liou M-J, Li C-Y (1999) The Bakkenolides from the Root of Petasites formosanus and Their Cytotoxicity. Chem Pharm Bull 47: 375CrossRefGoogle Scholar
  56. 47g.
    Savina AA, Perel’son ME, Ban’kovskii AI, Nikonov GK (1970) Structure of Seselirin, a New Chromone from Seseli sessiliflorum Roots. Khim Prir Soedin 6: 412; Chem Nat Compd (Engl Transl) 6: 419;Google Scholar
  57. 47h.
    Savina AA, Perel’son ME, Nikonov GK, Ban’kovskii Al (1970) Floroselin, a New Coumarin from Seseli ses.siliflorum Roots. Khim Prir Soedin 6: 517; Chem Nat Compd (Engl Transl) 6: 536;Google Scholar
  58. 47i.
    . Savina AA, Nikonov GK, Ban’kovskii Al (1970) Seseliflorin, a New Coumarin from Seseli sessilifforum Roots. Khim Prir Soedin 6: 522; Chem Nat Compd (Engl Transi) 6: 540;Google Scholar
  59. 47j.
    Savina AA, Perel’son ME, (1973) trans-8-Decene-4,6-diynyl cis-3methylthioacrylate from Seseli sessilii forum Roots. Khim Prir Soedin 9: 286; Chem Nat Compd (Engl Trans]) 9: 283;Google Scholar
  60. 47k.
    Asakawa Y (1990) Terpenoids and Aromatic Compounds with Pharmacological Activity from Bryophytes. In: Zinsmeister HD, Mues R (eds) Bryophytes. Their Chemistry and Chemical Taxonomy. Clarendon Press, Oxford, p 369;Google Scholar
  61. 471.
    Asakawa Y, Takikawa K, Tori M, Campbell EO (1986) Chemosystematics of Bryophytes, Part 19. Isotacin C and Balantiolide, Two Aromatic Compounds from the New Zealand Liverwort Balantiopsis rosea. Phytochemistry 25: 2543;CrossRefGoogle Scholar
  62. 47m.
    Hart NK, Lamberton JA (1966) Pyrrolizidine Alkaloids from Planchonella Species (Family Sapotaceae). Aust J Chem 19: 1259;CrossRefGoogle Scholar
  63. 47n.
    Frohwein YZ, Dafni Z, Friedmann M, Mateles RI (1973) New Metabolites from Streptomyces alboniger. Agric Biol Chem 37: 679;CrossRefGoogle Scholar
  64. 47o.
    Yagi S, Kitai S, Kimura T (1989) trans-3Methylthioacrylamide, a New Metabolic Product from Methionine by Streptomyces. Agrie Biol Chem 53: 2415;CrossRefGoogle Scholar
  65. 47p.
    Haneda K, Shinose M, Seino A, Tabata N, Tomoda H, Iwai Y, Omura S (1994) Cytosaminomycins, New Anticoccidial Agents Produced by Streptomyces sp. KO-8119. J Antibiot 47: 774CrossRefGoogle Scholar
  66. 48.
    Ikegami F, Shibasaki I, Ohmiya S, Ruangrungsi N, Murakoshi I (1985) Entadamide A, a New Sulfur-Containing Amide from Entada phaseoloides Seeds. Chem Pharm Bull 33: 5153CrossRefGoogle Scholar
  67. 49.
    Ikegami F, Ohmiya S, Ruangrungsi N, Sakai S-I, Murakoshi I (1987) Entadamide B, a Second New Sulfur-Containing Amide from Entada phaseoloides. Phytochemistry 26: 1525CrossRefGoogle Scholar
  68. 50.
    Ikegami F, Sekine T, Duangteraprecha S, Matsushita N, Matsuda N, Ruangrungsi N, Murakoshi I (1989) Entadamide C, a Sulfur-Containing Amide from Entada phaseoloides. Phytochemistry 28: 881CrossRefGoogle Scholar
  69. 51.
    Dai J, Kardono LBS, Tsauri S, Padmawinata K, Pezzuto JM, Kinghorn AD (1991) Studies on Indonesian Medicinal Plants, Part 3. Phenylacetic Acid Derivatives and a Thioamide Glycoside from Entada phaseoloides. Phytochemistry 30: 3749CrossRefGoogle Scholar
  70. 52.
    Hinterberger S, Hofer O, Greger H (1994) Synthesis and Corrected Structures of Sulphur Containing Amides from Glycosmis Species: Sinharines, Penimides and Illukumbins. Tetrahedron 50: 6279CrossRefGoogle Scholar
  71. 53.
    Hinterberger S, Hofer O, Greger H (1998) Synthesis of Amides from Glycosmis Species: Methylthiopropenoic Acid, Methylsulfonylpropenoic Acid, Thiocarbamic Acid S-Methyl Ester, and Senecioic Acid Amides. Tetrahedron 54: 487CrossRefGoogle Scholar
  72. 54a.
    Johnson WM, Littler SW, Strauss CR (1994) Structural Revision and Synthesis of Sinharine and Methylsinharine. Aust J Chem 47: 751;CrossRefGoogle Scholar
  73. 54b.
    Blaya S, Chinchilla R, Nájera C (1995) Stereoselective Synthesis of Alkoxy and ß-Alkylthio-Acrylic Esters and Amides from ß-Tosylacrylic Derivatives. Tetrahedron 51: 3617;CrossRefGoogle Scholar
  74. 54c.
    Rossi R, Bellina F, Mannina L (1997) Selective Palladium-Mediated Carbon-Oxygen Bond and Carbon-Sulfur Bond Forming Reactions Which Involve Functionalized Csp2Hybridized Halides or Triflates and Csp-Hybridized Halides. Tetrahedron 53: 1025CrossRefGoogle Scholar
  75. 55.
    Lakshmi V, Prakash D, Raj K, Kapil RS, Popli SP (1984) Monoterpenoid Furanocoumarin Lactones from Clausena anisata. Phytochemistry 23: 2629CrossRefGoogle Scholar
  76. 56.
    Lahey FN, Macleod JK (1967) Chemotaxonomy of the Rutaceae, VIII. Extractives of Geijera parviflora. Aust J Chem 20: 1943CrossRefGoogle Scholar
  77. 57.
    Dreyer DL, Lee A (1972) The Coumarins of Geijera parviflora Lindl. Phytochemistry 11: 763CrossRefGoogle Scholar
  78. 58.
    Chatterjee A, Bose S, Srimani SK (1959) Studies on the Constitution, Stereochemistry, and Synthesis of Aegeline, an Alkaloidal Amide of Aegle marmelos Correa. J Org Chem 24: 687CrossRefGoogle Scholar
  79. 59.
    Miyamoto K, Inoue Y (1978) Aliphatic Compounds Having Sulfinyl or Sulfonyl Groups. Japan Kokai 77,151,123 (Patent); CA 89: 42436qGoogle Scholar
  80. 60.
    Brader G (1997) Inhaltsstoffe aus Rutaceen and ihre biologische Aktivität bei Spodoptera littoralis. PhD Thesis, University of Vienna, AustriaGoogle Scholar
  81. 61.
    Vajrodaya S (1998) Comparative Phytochemical Analyses within the Genus Glycosmis (Rutaceae-Citroideae). PhD Thesis, University of Vienna, AustriaGoogle Scholar
  82. 62.
    Stone BC (1985) Rutaceae. In: Dassanayake MD, Fosberg FR (eds) A Revised Handbook of the Flora of Ceylon, vol 5. Amerind Publishing, New Delhi, p 406Google Scholar
  83. 63.
    Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, Lignans, Triterpenes, and Insecticidal Cyclopenta[b]benzofurans from Aglaia Species. J Nat Prod 61: 1482CrossRefGoogle Scholar
  84. 64.
    Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P (1999) Insecticidal Rocaglamide Derivatives and Related Compounds from Aglaia odorata (Meliaceae). Phytochemistry 51: 367CrossRefGoogle Scholar
  85. 65.
    Greger H, Pacher T, Vajrodaya S, Bacher M, Hofer 0 (2000) Infraspecific Variation of Sulfur-Containing Bisamides from Aglaia leptantha. J Nat Prod 63: 616CrossRefGoogle Scholar
  86. 66.
    Saifah E, Suttisri R, Shamsub S, Pengsuparp T, Lipipun V (1999) Bisamides from Aglaia edulis. Phytochemistry 52: 1085CrossRefGoogle Scholar
  87. 67.
    Lukaseder B, unpublished resultsGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • O. Hofer
    • 1
  • H. Greger
    • 2
  1. 1.Institute of Organic ChemistryUniversity of ViennaViennaAustria
  2. 2.Comparative Phytochemistry Department, Institute of BotanyUniversity of ViennaViennaAustria

Personalised recommendations