Skip to main content

Abstract

Glycosmis is a clearly defined genus within the tribe Clauseneae of the Aurantioideae subfamily of the family Rutaceae comprising about 40 species (1). Its range of distribution is centered in south and southeast Asia (India, Sri Lanka, Myanmar, Thailand, Malaysia, Indonesia) and extends to south China and Taiwan as well as to New Guinea and north Australia. Exceptions are only cultivated species like the Chinese G. parviflora (Sims) Little, formerly called G. citrifolia (Willd.) Lindley, which became naturalized in tropical America and Africa (Angola) (1). The shrubs or small trees are unarmed and possess pinnate or simple leaves with translucent punctate glands emitting an aromatic odor when crushed. The axillary inflorescences are usually dispersed closed panicles with small white flowers. The fruits are mostly pink, reddish or white berries of about 1 cm in diameter with only one or two seeds. The genus name Glycosmis originates from the sweet smell of the flowers and the sweet taste of the fleshy pericarp of the fruits. A good field and herbarium character of the genus is that the buds of new leaves are usually covered with short rusty-red hairs. In spite of the good delimitation of Glycosmis from the other closely related Clauseneae genera Clausena, Micromelum, Murraya and Merrillia and the already existing subrevisionary treatment by Stone (7), there are still many unresolved taxonomic problems at the species level. Due to the pronounced variability in foliage, usually the ovular locule numbers and/or the flower characters are required for proper species delimitation of Glycosmis. Consequently, phytochemical analyses have often been based on improperly identified plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stone BC (1985) A Conspectus of the Genus Glycosmis Correa-Studies in Malesian Rutaceae, III. Proc Akad Nat Sci Philadelphia, 137: 1

    Google Scholar 

  2. Waterman PG, Grundon MF (1983) Chemistry and Chemical Taxonomy of the Rutales. London New York, Academic Press

    Google Scholar 

  3. Hegenauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser, Basel Stuttgart;

    Google Scholar 

  4. Chemotaxonomie der Pflanzen, vol 9. Birkhäuser, Basel Boston Berlin

    Google Scholar 

  5. Rastogi K, Kapil RS, Popli SP (1980) New Alkaloids from Glycosmis mauritiana. Phytochemistry 19: 945

    Article  CAS  Google Scholar 

  6. Bhattacharyya P, Chowdhury BK (1985) Glycolone, a Quinoline Alkaloid from Glycosmis pentaphylla. Phytochemistry 24: 634

    Article  CAS  Google Scholar 

  7. Das BP, Chowdhury BK (1978) Glycosolone: A New Quinolone Alkaloid from Glycosmis pentaphylla (Retz) DC. Chem Ind 1978: 272

    Google Scholar 

  8. Kumar P, Das BP, Sinha SKP (1986) Homo-glycosolone: A New Quinolone Alkaloid from Glycosmis pentaphylla (Retz) DC. Chem Ind 1986: 669

    Google Scholar 

  9. Bowen IA, Perera KPWC, Lewis JR (1980) Alkaloids from the Stem of Glycosmis bilocularis (Rutaceae). Phytochemistry 19: 1566

    CAS  Google Scholar 

  10. Govindachari TR, Pai BR, Subramaniam PS (1966) Alkaloids of Glycosmis pentaphylla (Retz) Correa. Tetrahedron 22: 3245

    Article  CAS  Google Scholar 

  11. Wu T-S, Furukawa H (1982) Acridone Alkaloids IV. Structures of Four New Acridone Alkaloids from Glycosmis citrifolia (WilId.) Lindl. Heterocycles 19: 1047

    Article  CAS  Google Scholar 

  12. Wu T-S, Furukawa H, Hsu KS (1982) New Furo-and Pyranoacridone Alkaloids from Glycosmis citrifolia (Willd.) Lindl Heterocycles 19: 1227

    Google Scholar 

  13. Wu T-S, Furukawa H, Kuoh CS, Hsu KS (1983) Acridone Alkaloids, Part 9. Chemical Constituents of Glycosmis citrifolia (Willd.) Lindl. Structures of Novel Linear Pyranoacridones, Furoacridones, and other New Acridone Alkaloids. J Chem Soc Perkin Trans I, 1681

    Google Scholar 

  14. Furukawa H, Ito C, Ono T, Wu T-S, Kuoh CS (1993) Spectroscopic Elucidation of Glycobismines, First Naturally Occurring Binary Acridone Alkaloids Containing a Carbon-Carbon Linkage. J Chem Soc Perkin I, 471

    Google Scholar 

  15. Ono T, Ito C, Furukawa H, Wu T-S, Kuoh CS, Hsu KS (1995) Two New Acridone Alkaloids from Glycosmis Species. J Nat Prod 58: 1629

    Article  CAS  Google Scholar 

  16. Bhattacharyya P, Chakrabartty PK, Chowdhury BK (1985) Glycozolidol, an Antibacterial Carbazole Alkaloid from Glycosmis pentaphylla. Phytochemistry 24: 882

    Article  CAS  Google Scholar 

  17. Kumar V, Reisch J, Wickramasinghe A (1989) Glycomaurin and Glycomaurrol, New Carbazole Alkaloids from Glycosmis mauritiana (Rutaceae) Bark. Aust J Chem 42: 1375

    Article  CAS  Google Scholar 

  18. Chakraborty DP (1977) Carbazole Alkaloids. In: Herz W, Grisebach H, Kirby GW (eds) Progress in Chemistry of Organic Natural Products, vol. 34. Springer, Wien New York, p 299;

    Google Scholar 

  19. Bhattacharyya P, Chakraborty DP (1987) Carbazole Alkaloids II. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol. 52. Springer, Wien New York, p 159;

    Google Scholar 

  20. Chakraborty DP, Shymali Roy (1991) Carbazole Alkaloids III. In: Herz W, Kirby GW, Steglich W, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol 57. Springer, Wien New York, p 71

    Chapter  Google Scholar 

  21. Josh SS, Biswas GK, Bhattacharyya SK, Bhattacharyya P, Chakraborty A, Chowdhury BK (1992) Carbazole Alkaloids from Glycosmis pentaphylla. Phytochemistry 31: 2503

    Article  Google Scholar 

  22. Sarkar M, Chakraborty DP (1977) Chemical Taxonomy, Part 40. Some Minor Constituents from Glycosmis pentaphylla. Phytochemistry 16: 2007

    Google Scholar 

  23. Sarkar M, Chakraborty DP (1979) Chemical Taxonomy, Part 45. Glycophymoline, a New Minor Quinazoline Alkaloid from Glycosmis pentaphylla. Phytochemistry 18: 694

    Article  CAS  Google Scholar 

  24. Johne S (1984) The Quinazoline Alkaloids. In: Herz W, Grisebach H, Kirby GW, Tamm C (eds) Progress in the Chemistry of Organic Natural Products, vol 46. Springer, Wien New York, p 159

    Chapter  Google Scholar 

  25. Seger C, Vajrodaya S, Greger H, Hofer O (1998) Structure Elucidation and Synthesis of a New Bioactive Quinazolone Derivative from Glycosmis cf. chlorosperma. Chem Pharm Bull 46: 1926

    Article  CAS  Google Scholar 

  26. Chakravarty AK, Das B, Masuda K, Ageta H (1996) Tetracyclic Triterpenoids from Glycosmis arborea. Phytochemistry 42: 1109

    Article  CAS  Google Scholar 

  27. Chakravarty AK, Das B, Masuda K, Ageta H (1996) Glycoric Acid Possessing a New 10-Normegastigmane Skeleton from Glycosmis arborea. Chem Pharm Bull 44: 1421

    Article  CAS  Google Scholar 

  28. Kiyotani T, Masuda K, Ageta H, Chakravarty AK, Das B (1996) Glycoric Acid, a New Degraded Carotenoid from Glycosmis arborea. Acta Crystallogr Sect C Cryst Struct Commun C52: 3216

    Article  CAS  Google Scholar 

  29. Seger C, Jandl B, Brader G, Robien W, Hofer O, Greger H (1997) Case studies of CSEARCH Supported Structure Elucidation Strategies: Lupeol and a New Germacrane Derivative. Fresenius J Anal Chem 359: 42

    Article  CAS  Google Scholar 

  30. Seger C, Vajrodaya S, Hofer O, Greger H (1998) Two New Nor-Diterpenes from Glycosmis cf. cyanocarpa. Nat Prod Lett 12: 117

    Article  CAS  Google Scholar 

  31. Wu T-S, Chang F-C, Wu PL (1995) Flavonoids, Amidosulfoxides and an Alkaloid from the Leaves of Glycosmis citrifolia. Phytochemistry 39: 1453

    Article  CAS  Google Scholar 

  32. Greger H, Hofer O (unpublished results)

    Google Scholar 

  33. Dadson BA, Minta A (1976) Isolation, Identification, and Synthesis of Rubesamide, a New Naturally Occurring Cyclopropanecarboxamide from Fagara rubescens. J Chem Soc Perkin Trans I, 146

    Google Scholar 

  34. Li Q (1988) Chemistry and Systematic Studies on the Clauseneae of Rutaceae Ph.D. Thesis, Zhongshan University, Guangzhou, China

    Google Scholar 

  35. Johns SR, Lamberton JA, Price JR (1967) (f)-N-Benzoyl[2-hydroxy-2-(4’-methoxyphenyl)-ethylamine from Clausena brevistyla Oliver (Family Rutaceae). Aust J Chem 20: 2795

    Google Scholar 

  36. Yang M-H, Chen Y-R, Liu G, Huang L (1988) Process for the Preparation of a New Pharmacologically Active Bicyclic Lactam and its Use in Medicine (Patent, Bayer A.-G., Chinese Academy of Medical Sciences, Ger. Offen. DE 3,700,706); CA 108: 37514v

    Google Scholar 

  37. Hartwig W, Born L (1997) Diastereoselective and Enantioselective Total Synthesis of the Hepatoprotective Agent Clausenamide. J Org Chem 52: 4352; see also Chen Y-R, Yang M-H, Huang L, Geng T (1986) Patent; CA. 105: 72689r

    Google Scholar 

  38. Riemer B, Hofer O. Greger H (1997) Tryptamine Derived Amides from Clausena indica. Phytochemistry 45: 337

    Article  CAS  Google Scholar 

  39. Sinhababu A, Thakur S (1995) Constituents of the Flower of Glrco.smi.s pentaphrl/a (Retz) Correa. Asian J Chem 7, 221; CA 122: 128671z

    Google Scholar 

  40. Greger H, Hofer O. Kählig H-P, Wurz G (1992) Sulfur-Containing Cinnamides with Antifungal Activity from Glrcosmis c.vanocarpa. Tetrahedron 48: 1209

    Article  CAS  Google Scholar 

  41. Greger H, Hadacek F, Hofer O, Wurz G, Zechner G (1993) Different Types of Sulfur-Containing Amides from Glrcosmis cf. chlorosperrna. Phytochemisty 32: 933

    Article  CAS  Google Scholar 

  42. Greger H, Zechner G, Hofer O. Hadacek F, Wurz G (1993) Sulphur-Containing Amides from Glrcosmis Species with Different Antifungal Activity. Phytochemistry 34: 175

    Article  CAS  Google Scholar 

  43. Greger H, Hofer O, Zechner G, Hadacek F, Wurz G (1994) Sulphones Derived from Methylthiopropenoic Acid Amides from Glrcosmis angusti/o/ia. Phytochemistry 37: 1305

    Article  CAS  Google Scholar 

  44. Hofer O, Zechner G, Wurz G, Hadacek F, Greger H (1995) Ritigalin, a New Thiocarbonic Acid Imide from G/veosmis Species. Monatsh Chem 126: 365

    Article  CAS  Google Scholar 

  45. Hofer O, Zechner G, Vajrodaya S, Lutz G, Greger H (1995) New Anthranilic and Methylsulfonylpropenoic Acid Amides from Thai Glrcosmi.s Species. Liebigs Ann Chem 1995: 1789

    Google Scholar 

  46. Greger H, Zechner G, Hofer O, Vajrodaya S (1996) Bioactive Amides from Glrcosmis Species. J Nat Prod 59: 1163

    Article  CAS  Google Scholar 

  47. Hofer O, Vajrodaya S, Greger H (1998) Phenethylamides With an Unusual 4-Oxo-2oxolenyl Terpenoid Side Chain from Glrcosmis Species. Monatsh Chem 129: 213

    CAS  Google Scholar 

  48. Vajrodaya S, Bacher M, Greger H, Hofer O (1998) Organ-specific Chemical Differences in Glrcosmis lrichanthera. Phytochemistry 48: 897

    Article  CAS  Google Scholar 

  49. Hofer O, Greger H, Lukaseder B, Vajrodaya S, Bacher M (2000) Prenylated Sulfonyl Amides from Glrcosmis Species. Phytochemistry 54: 207

    Article  CAS  Google Scholar 

  50. Abe N, Onoda R, Shirahata K, Kato T, Woods MC, Kitahara Y, Ro K, Kurihara T (1968) The Structures of Bakkenolides-B, -C, and -D as determined by the use of Nuclear Overhauser Effect. Tetrahedron Lett 1968: 1993;

    Google Scholar 

  51. Naya K, Hayashi M, Takagi I, Nakamura S, Kobayashi M (1972) Structural Elucidation of Sesquiterpene Lactones from Petasites japonicas. Bull Chem Soc Jap 45: 3673;

    Article  Google Scholar 

  52. . Yaoita Y, Kikuchi M (1996) Constituents of the Rhizomes of Petasite.s japnnicus. Maxim. IX. Structures of New Dinor-Eremophilane Derivatives and New Eremophilenolides. Chem Pharm Bull 44: 1731;

    Google Scholar 

  53. Tori M, Kawahara M, Sono M (1997) Novel Epoxyeremophilanolides, Eremopetasitenins Al, A2, BI, and B2, from Petasites japonicus. Tetrahedron Lett 38: 1965;

    Article  Google Scholar 

  54. Tori M, Kawahara M, Sono M (1998) Eremophilane-Type Sesquiterpenes From Fresh Rhizomes of Petasites japnnicus. Phytochemistry 47: 401;

    Article  Google Scholar 

  55. Wu T-S, Kao M-S, Wu P-L, Lin F-W, Shi L-S, Liou M-J, Li C-Y (1999) The Bakkenolides from the Root of Petasites formosanus and Their Cytotoxicity. Chem Pharm Bull 47: 375

    Article  CAS  Google Scholar 

  56. Savina AA, Perel’son ME, Ban’kovskii AI, Nikonov GK (1970) Structure of Seselirin, a New Chromone from Seseli sessiliflorum Roots. Khim Prir Soedin 6: 412; Chem Nat Compd (Engl Transl) 6: 419;

    Google Scholar 

  57. Savina AA, Perel’son ME, Nikonov GK, Ban’kovskii Al (1970) Floroselin, a New Coumarin from Seseli ses.siliflorum Roots. Khim Prir Soedin 6: 517; Chem Nat Compd (Engl Transl) 6: 536;

    Google Scholar 

  58. . Savina AA, Nikonov GK, Ban’kovskii Al (1970) Seseliflorin, a New Coumarin from Seseli sessilifforum Roots. Khim Prir Soedin 6: 522; Chem Nat Compd (Engl Transi) 6: 540;

    Google Scholar 

  59. Savina AA, Perel’son ME, (1973) trans-8-Decene-4,6-diynyl cis-3methylthioacrylate from Seseli sessilii forum Roots. Khim Prir Soedin 9: 286; Chem Nat Compd (Engl Trans]) 9: 283;

    Google Scholar 

  60. Asakawa Y (1990) Terpenoids and Aromatic Compounds with Pharmacological Activity from Bryophytes. In: Zinsmeister HD, Mues R (eds) Bryophytes. Their Chemistry and Chemical Taxonomy. Clarendon Press, Oxford, p 369;

    Google Scholar 

  61. Asakawa Y, Takikawa K, Tori M, Campbell EO (1986) Chemosystematics of Bryophytes, Part 19. Isotacin C and Balantiolide, Two Aromatic Compounds from the New Zealand Liverwort Balantiopsis rosea. Phytochemistry 25: 2543;

    Article  CAS  Google Scholar 

  62. Hart NK, Lamberton JA (1966) Pyrrolizidine Alkaloids from Planchonella Species (Family Sapotaceae). Aust J Chem 19: 1259;

    Article  CAS  Google Scholar 

  63. Frohwein YZ, Dafni Z, Friedmann M, Mateles RI (1973) New Metabolites from Streptomyces alboniger. Agric Biol Chem 37: 679;

    Article  CAS  Google Scholar 

  64. Yagi S, Kitai S, Kimura T (1989) trans-3Methylthioacrylamide, a New Metabolic Product from Methionine by Streptomyces. Agrie Biol Chem 53: 2415;

    Article  CAS  Google Scholar 

  65. Haneda K, Shinose M, Seino A, Tabata N, Tomoda H, Iwai Y, Omura S (1994) Cytosaminomycins, New Anticoccidial Agents Produced by Streptomyces sp. KO-8119. J Antibiot 47: 774

    Article  CAS  Google Scholar 

  66. Ikegami F, Shibasaki I, Ohmiya S, Ruangrungsi N, Murakoshi I (1985) Entadamide A, a New Sulfur-Containing Amide from Entada phaseoloides Seeds. Chem Pharm Bull 33: 5153

    Article  CAS  Google Scholar 

  67. Ikegami F, Ohmiya S, Ruangrungsi N, Sakai S-I, Murakoshi I (1987) Entadamide B, a Second New Sulfur-Containing Amide from Entada phaseoloides. Phytochemistry 26: 1525

    Article  CAS  Google Scholar 

  68. Ikegami F, Sekine T, Duangteraprecha S, Matsushita N, Matsuda N, Ruangrungsi N, Murakoshi I (1989) Entadamide C, a Sulfur-Containing Amide from Entada phaseoloides. Phytochemistry 28: 881

    Article  CAS  Google Scholar 

  69. Dai J, Kardono LBS, Tsauri S, Padmawinata K, Pezzuto JM, Kinghorn AD (1991) Studies on Indonesian Medicinal Plants, Part 3. Phenylacetic Acid Derivatives and a Thioamide Glycoside from Entada phaseoloides. Phytochemistry 30: 3749

    Article  CAS  Google Scholar 

  70. Hinterberger S, Hofer O, Greger H (1994) Synthesis and Corrected Structures of Sulphur Containing Amides from Glycosmis Species: Sinharines, Penimides and Illukumbins. Tetrahedron 50: 6279

    Article  CAS  Google Scholar 

  71. Hinterberger S, Hofer O, Greger H (1998) Synthesis of Amides from Glycosmis Species: Methylthiopropenoic Acid, Methylsulfonylpropenoic Acid, Thiocarbamic Acid S-Methyl Ester, and Senecioic Acid Amides. Tetrahedron 54: 487

    Article  CAS  Google Scholar 

  72. Johnson WM, Littler SW, Strauss CR (1994) Structural Revision and Synthesis of Sinharine and Methylsinharine. Aust J Chem 47: 751;

    Article  CAS  Google Scholar 

  73. Blaya S, Chinchilla R, Nájera C (1995) Stereoselective Synthesis of Alkoxy and ß-Alkylthio-Acrylic Esters and Amides from ß-Tosylacrylic Derivatives. Tetrahedron 51: 3617;

    Article  CAS  Google Scholar 

  74. Rossi R, Bellina F, Mannina L (1997) Selective Palladium-Mediated Carbon-Oxygen Bond and Carbon-Sulfur Bond Forming Reactions Which Involve Functionalized Csp2Hybridized Halides or Triflates and Csp-Hybridized Halides. Tetrahedron 53: 1025

    Article  CAS  Google Scholar 

  75. Lakshmi V, Prakash D, Raj K, Kapil RS, Popli SP (1984) Monoterpenoid Furanocoumarin Lactones from Clausena anisata. Phytochemistry 23: 2629

    Article  CAS  Google Scholar 

  76. Lahey FN, Macleod JK (1967) Chemotaxonomy of the Rutaceae, VIII. Extractives of Geijera parviflora. Aust J Chem 20: 1943

    Article  CAS  Google Scholar 

  77. Dreyer DL, Lee A (1972) The Coumarins of Geijera parviflora Lindl. Phytochemistry 11: 763

    Article  CAS  Google Scholar 

  78. Chatterjee A, Bose S, Srimani SK (1959) Studies on the Constitution, Stereochemistry, and Synthesis of Aegeline, an Alkaloidal Amide of Aegle marmelos Correa. J Org Chem 24: 687

    Article  CAS  Google Scholar 

  79. Miyamoto K, Inoue Y (1978) Aliphatic Compounds Having Sulfinyl or Sulfonyl Groups. Japan Kokai 77,151,123 (Patent); CA 89: 42436q

    Google Scholar 

  80. Brader G (1997) Inhaltsstoffe aus Rutaceen and ihre biologische Aktivität bei Spodoptera littoralis. PhD Thesis, University of Vienna, Austria

    Google Scholar 

  81. Vajrodaya S (1998) Comparative Phytochemical Analyses within the Genus Glycosmis (Rutaceae-Citroideae). PhD Thesis, University of Vienna, Austria

    Google Scholar 

  82. Stone BC (1985) Rutaceae. In: Dassanayake MD, Fosberg FR (eds) A Revised Handbook of the Flora of Ceylon, vol 5. Amerind Publishing, New Delhi, p 406

    Google Scholar 

  83. Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, Lignans, Triterpenes, and Insecticidal Cyclopenta[b]benzofurans from Aglaia Species. J Nat Prod 61: 1482

    Article  CAS  Google Scholar 

  84. Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P (1999) Insecticidal Rocaglamide Derivatives and Related Compounds from Aglaia odorata (Meliaceae). Phytochemistry 51: 367

    Article  CAS  Google Scholar 

  85. Greger H, Pacher T, Vajrodaya S, Bacher M, Hofer 0 (2000) Infraspecific Variation of Sulfur-Containing Bisamides from Aglaia leptantha. J Nat Prod 63: 616

    Article  CAS  Google Scholar 

  86. Saifah E, Suttisri R, Shamsub S, Pengsuparp T, Lipipun V (1999) Bisamides from Aglaia edulis. Phytochemistry 52: 1085

    Article  CAS  Google Scholar 

  87. Lukaseder B, unpublished results

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this chapter

Cite this chapter

Hofer, O., Greger, H. (2000). Sulfur-Containing Amides from Glycosmis Species (Rutaceae). In: Herz, W., Falk, H., Kirby, G.W., Moore, R.E. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 80. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6331-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6331-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7238-4

  • Online ISBN: 978-3-7091-6331-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics