Advertisement

Biocatalysis pp 119-127 | Cite as

Microbial and Enzymatic Synthesis of Optically Pure D- and L-3-Trimethylsilyl-alanine by Deracemization of D,L-5-Trimethylsilyl-methyl-hydantoin

  • Markus Pietzsch
  • Thomas Waniek
  • Richard J. Smith
  • Svetoslav Bratovanov
  • Stefan Bienz
  • Christoph Syldatk

Abstract

The sterospecificities of hydantoinases and N-carbamoyl amino acid amidohydrolases (N-carbamoylases) from different microbial sources were investigated for the stereoselective syntheses of the unnatural silicon-containing amino acids D- and L-3-trimethylsilyl-alanine (3) from the respective racemic hydantoin D,L-1. In a preparative biotransformation, whole resting cells of Agrobacterium sp. IP I 671, immobilized in a Ca-alginate matrix, were used for the synthesis of amino acid D-3 in 88% yield and 95% enantiomeric excess. Since the purified D-N-carbamoylase from Agrobacterium sp. IP I 671 was shown to be 100% D-selective, the enantiomeric purity of 95% of D-3 arising from the transformation with the immobilized cells must be explained by the participation of a further, L-selective N-carbamoylase or, which is more likely, by racemization of the final hydrolysis product by the action of an amino acid racemase. Isolated hydantoinases from Bacillus thermoglucosidasius, Thermus sp., Arthrobacter aurescens DSM 3745, and Arthrobacter crystallopoietes DSM 20117 turned out to be stereospecific for the conversion of the D-form of hydantoin D,L-1. The enantiomerically pure L-form of 3 was also prepared. It was synthesized from racemic N-carbamoyl amino acid D,L-2 by enantiomer-specific hydrolysis of the L-form in presence of L-N-carbamoylase from Arthrobacter aurescens DSM 3747.

Keywords

Immobilize Cell Enantiomeric Excess Optically Pure Enantiomeric Purity Chiral HPLC 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weidmann B (1992) xx.Chimia 46: 312Google Scholar
  2. 2.
    Fitzi R, Seebach D (1988)Tetrahedron 44: 5277CrossRefGoogle Scholar
  3. 3.
    Myers Ag, Gleason JL, Yoon T, Kung DW (1997)J Am Chem Soc 119: 656CrossRefGoogle Scholar
  4. 4.
    Walkup RD, Cole DC, Whittlesey BR (1995)J Org Chem 60: 2630CrossRefGoogle Scholar
  5. 5.
    Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1996)Appl Microbiol Biotechnol 45: 51CrossRefGoogle Scholar
  6. 6.
    Tsuji Y, Yamanaka H, Fukui T, Kawamoto T, Tanaka A (1997)Appl Microbiol Biotechnol 47: 114CrossRefGoogle Scholar
  7. 7.
    Pietzsch M, Syldatk C (1995) Hydrolysis and formation of hydantoins. In: Drauz K, Waldmann H (eds) Enzyme Catalysis in Organic Synthesis. VCH-Verlag, Weinheim, p 409Google Scholar
  8. 8.
    Runser SM, Meyer PC (1993)Eur J Biochem 213: 1315CrossRefGoogle Scholar
  9. 9.
    May O, Siemann M, Pietzsch M, Kiess M, Mattes R, Syldatk C (1988)J Biotechnol 61: 1CrossRefGoogle Scholar
  10. 10.
    Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J, Pietzsch M (1999)J Biotechnol 68: 101CrossRefGoogle Scholar
  11. 11.
    Runser S, Chinski N, Ohleyer E (1990)Appl Microbiol Biotechnol 33: 382CrossRefGoogle Scholar
  12. 12.
    Hils M (1998) Mutanten der D-Carbamoylase zur Bildung aktiven Enzyms bei Expression des Gens in Escherichia coli und Analyse eines Genclusters f¨¹r die Enzyme des Hydantoin-Abbaus aus Agrobacterium sp. IP 1–671. PhD Thesis, Institute of Industrial Genetics, Stuttgart, GermanyGoogle Scholar
  13. 13.
    Möller A, Syldatk C, Schulze M, Wagner F (1988)Enzyme Microb Technol 10: 618CrossRefGoogle Scholar
  14. 14.
    Faber K (1997), Biotransformations in Organic Chemistry ¡ª A Textbook. Springer, BerlinGoogle Scholar
  15. 15.
    Pietzsch M, Schwämmle A, Syldatk C (in prep.)Google Scholar
  16. 16.
    Waniek T (1999) Untersuchungen zur Substratspezifität und Enantioselektivität mikrobieller Hydantoinasen. PhD Thesis, Institute of Biochemical Engineering, Stuttgart, GermanyGoogle Scholar
  17. 17.
    Porter TH, Shive W (1968)J Med Chem 11: 402CrossRefGoogle Scholar
  18. 18.
    Smith RJ, Bratovanov S, Bienz S (1997)Tetrahedron 53: 13695CrossRefGoogle Scholar
  19. 19.
    Meyer P, Runser S (1993)FEMS Microbiol Lett 109: 67CrossRefGoogle Scholar
  20. 20.
    Huber P, Bratovanov S, Bienz S, Syldatk C, Pietzsch M (1996)Tetrahedron Asymm 7: 69CrossRefGoogle Scholar
  21. 21.
    Siemann M, Alvarado-Mar¨ªn A, Pietzsch M, Syldatk C (1998)J Molec Catal B, Enzymatic 6: 387CrossRefGoogle Scholar
  22. 22.
    Pietzsch M, Wiese A, Ragnitz K, Wilms B, Altenbuchner J, Mattes R, Syldatk C (1999)J Chromatogr B 737: 179Google Scholar
  23. 23.
    Ragnitz K, Syldatk C, Pietzsch M (in prep.)Google Scholar
  24. 24.
    Fahmy RA, Niederwieser A, Pataki G, Brenner M (1961)Helv Chim Acta 44: 2022CrossRefGoogle Scholar
  25. 25.
    Dakin HD (1919)Biochem J 13: 398Google Scholar

Copyright information

© Springer-Verlag Vienna 2000

Authors and Affiliations

  • Markus Pietzsch
    • 1
  • Thomas Waniek
    • 1
  • Richard J. Smith
    • 2
  • Svetoslav Bratovanov
    • 2
  • Stefan Bienz
    • 2
  • Christoph Syldatk
    • 1
  1. 1.Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
  2. 2.Institute of Organic ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations