Advertisement

Biocatalysis pp 161-169 | Cite as

Enantioselective Sulfoxidations Catalyzed by Horseradish Peroxidase, ManganesePeroxidase, and Myeloperoxidase

  • Antonin Tuynman
  • Hans E. Schoemaker
  • Ron Weyer

Abstract

Summary. Horseradish peroxidase (HRP), myeloperoxidase (MPO), and manganese peroxidase (MnP) have been shown to catalyze the asymmetric sulfoxidation of thioanisole. When H202 was added stepwise to MPO, a maximal yield of 78% was obtained at pH 5 (ee 23%), whereas an optimum in the enantiomeric excess (32%, (R)-sulfoxide) was found at pH 6 (60% yield). For MnP a yield of 18% and a high enantiomeric excess of 91% of the (S)-sulfoxide were obtained at pH 5 and a yield of 36% and an ee of 87% at pH 7.0. Optimization of the conversion catalyzed by horseradish peroxidase at pH 7.0 by controlled continuous addition of hydrogen peroxide during turnover and monitoring the presence of native enzyme as well as of intermediates I, II, and III led to the formation of the sulfoxide in high yield (100%) and moderate enantioselectivity (60%, (S)-sulfoxide).

Keywords

Methyl Phenyl Native Enzyme Enantiomeric Excess Manganese Peroxidase Heme Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holland HL (1992) In: Holland HL (ed) Organic synthesis with oxidative enzymes. VCH, New YorkGoogle Scholar
  2. 2.
    Colonna S, Gaggero N, Manfredi A, Casella L, Gulotti M, Carrea G, Pasta P (1990)Biochemistry 29: 10465CrossRefGoogle Scholar
  3. 3.
    Colonna S, Gaggero N, Carrea G, Pasta P (1992) J Chem Soc Chem Commun 357Google Scholar
  4. 4.
    Colonna S, Gaggero N, Richelmi C, Carrea G, Pasta P (1995)Gaz Chim Ital 125: 479Google Scholar
  5. 5.
    Tuynman A, Vink MKS, Dekker HL, Schoemaker HE, Wever R (1998) Eur J Biochem 258: 906CrossRefGoogle Scholar
  6. 6.
    Allain AJ, Hager LP, Deng L, Jacobsen EN (1996) J Am Chem Soc 117: 4415Google Scholar
  7. 7.
    Tuynman A, Lutje Spelberg J, Kooter IM, Schoemaker HE, Wever R (2000) J Biol Chem 275: 3025CrossRefGoogle Scholar
  8. 8.
    Miller VP, Tschirret-Guth, RA, Ortiz de Montellano PR (1995) Arch Biochem Biophys 319: 333CrossRefGoogle Scholar
  9. 9.
    Hu S, Hager LP (1999)J Am Chem Soc 121: 872CrossRefGoogle Scholar
  10. 10.
    Corbett MD, Chipko BR (1979) Biochem J 183: 269Google Scholar
  11. 11.
    Van Deurzen MPJ, Remkes IJ, van Rantwijk F, Sheldon RA (1997) J Mol Cat A: Chemical 117: 329CrossRefGoogle Scholar
  12. 12.
    Van Deurzen MPJ, Seelbach K, van Rantwijik F, Kragl U, Sheldon RA (1997) Biocat Biotrans 15: 1CrossRefGoogle Scholar
  13. 13.
    De Gioia L, Ghibaudi EM, Laurenti E, Salmona M, Ferrari RP (1996)J Bioinorg Chem 1: 476Google Scholar
  14. 14.
    Klebanoff SJ (1968)J Bacteriol 95: 2131Google Scholar
  15. 15.
    Mayfield MB, Kishi K, Alic M, Gold MH (1994)Appl Environ Microbiol 60: 4303Google Scholar
  16. 16.
    Ortiz de Montellano PR (1992)Annu Rev Pharmacol Toxicol 32: 89CrossRefGoogle Scholar
  17. 17.
    Kobayashi S, Nakano M, Goto T, Kimura T, Schaap AP (1986)Biochem Biophys Res Commun 135: 166CrossRefGoogle Scholar
  18. 18.
    Kobayashi S, Nakano M, Kimura T, Schaap PA (1987)Biochemistry 26: 5019CrossRefGoogle Scholar
  19. 19.
    Casella L, Gullotti M, Ghezzi R, Poli S, Beringhelli T, Colonna S, Carrea G (1992)Biochemistry 31: 9451CrossRefGoogle Scholar
  20. 20.
    Baciocchi E, Lanzalunga O, Malandrucco S (1996)J Am Chem Soc 118: 8973CrossRefGoogle Scholar
  21. 21.
    Perez U, Dunford HB (1990) Biochem Biophys Acta 1038: 98CrossRefGoogle Scholar
  22. 22.
    Perez U, Dunford, HB (1990)Biochemistry 29: 2757CrossRefGoogle Scholar
  23. 23.
    Huwiler M, Jenzer H, Kohler H (1986)Eur J Biochem 158: 609CrossRefGoogle Scholar
  24. 24.
    Tanaka M, Ishimori K, Mukai, M, Kitagawa T, Morishima I (1997)Biochemistry 36: 9889CrossRefGoogle Scholar
  25. 25.
    Ozaki S, Ortiz de Montellano PRO (1994)J Am Chem Soc 116: 4487CrossRefGoogle Scholar
  26. 26.
    Harris RZ, Newmyer SL, Ortiz de Montellano PR (1993)J Biol Chem 268: 1637Google Scholar
  27. 27.
    Ozaki S, Ortiz de Montellano PR (1995)J Am Chem Soc 117: 7056CrossRefGoogle Scholar
  28. 28.
    Newmyer SL, Ortiz de Montellano PR (1995)J Biol Chem 270: 19430CrossRefGoogle Scholar
  29. 29.
    Savenkova MI, Ortiz de Montellano PR (1998)Arch Biochem Biophys 351: 286CrossRefGoogle Scholar
  30. 30.
    Savenkova MI, Ortiz de Montellano PR (1998)Biochemistry 37: 10828CrossRefGoogle Scholar
  31. 31.
    Capeillère-Blandin C, Martin C, Gaggero N, Pasta P, Carrea G, Colonna S (1998) Biochem J 335: 27Google Scholar
  32. 32.
    Baunsgaard L,Dalb¢ge H, Houen G, Rasmussen EM, Welinder KG (1993)Eur J Biochem 213: 605CrossRefGoogle Scholar
  33. 33.
    Bakkenist ARJ, Wever R, Vulsma T, Plat H, van Gelder BF (1978)Biochim Biophys Acta 524:45Google Scholar
  34. 34.
    Schonbaum GR, Lo S (1972)J Biol Chem 247: 3353Google Scholar
  35. 35.
    Millis CD, Cai D, Stankovich MT, Tien M (1994)Biochemistry 28: 8484CrossRefGoogle Scholar
  36. 36.
    Beers RF Jr and Sizer 1W (1952)J Biol Chem 195: 133Google Scholar

Copyright information

© Springer-Verlag Vienna 2000

Authors and Affiliations

  • Antonin Tuynman
    • 1
  • Hans E. Schoemaker
    • 2
  • Ron Weyer
    • 1
  1. 1.E.C. Slater Institute, BioCentrumUniversity of AmsterdamTV AmsterdamThe Netherlands
  2. 2.DSM ResearchBio-Organic ChemistryMD GeleenThe Netherlands

Personalised recommendations