Advertisement

Biocatalysis pp 129-140 | Cite as

Immobilization of Rhodococcus AJ270 and Use of Entrapped Biocatalyst for the Production of Acrylic Acid

  • John Colby
  • David Snella
  • Gary W. Black

Abstract

Rhodococcus AJ270 is adsorbed by Dowex 1 at 15.4 mg dry weight per g resin with maximum amidase specific activity observed at lower loadings. Bacteria form a monolayer on the resin surface, and adsorption is complete within 2 min AJ270 can be entrapped in agar and agarose gels (optimum loading: 20 mg dry weight bacteria per cm3 gel). Adsorption and entrapment improve amidase thermal stability 3-4 fold, and entrapment shifts the pH optimum from 8 to 7. Adsorbed and free bacteria show similar values for Km and Vmax, but entrapped bacteria have higher Km values. Compared with bacteria adsorbed to Dowex, the activity per cm3 of matrix of agar-entrapped AJ270 is eight-fold higher. In stirred-tank reactors, exposure to acrylic acid reduces the amidase activity of the biocatalyst in the hydrolysis of acrylamide. In column reactors, entrapped AJ270 suffers little reduction in amidase activity against 0.25 M acrylamide over 22 h continuous operation.

Keywords

Acrylic Acid Anionic Exchange Resin Column Reactor Nitrile Hydratase Immobilize Biocatalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Snell D, Colby J (1999)Enz Microbial Technol 24: 160CrossRefGoogle Scholar
  2. 2.
    Blakey AJ, Colby J, Williams E, O’Reilly C (1995)FEMS Microbiol Lett 129: 57Google Scholar
  3. 3.
    Meth-Cohn O, Wang M-X (1997) J Chem Soc Perkin Trans 1099Google Scholar
  4. 4.
    Meth-Cohn O, Wang M-X (1997) J Chem Soc Chem Commun 1041Google Scholar
  5. 5.
    Brennan MR, Armitage YC, Mortimer MG, Hughes J, Ramsden DK (1995)Biotechnol Lett 17: 513CrossRefGoogle Scholar
  6. 6.
    Nagasawa T, Yamada H (1989)Trends Biotechnol 7: 153CrossRefGoogle Scholar
  7. 7.
    Yamada H, Kobayashi M (1996)Bioscience Biotechnol Biochem 60: 1391CrossRefGoogle Scholar
  8. 8.
    Nawaz MS, Franklin W, Cerniglia CE (1993)Can J Microbiol 39: 207CrossRefGoogle Scholar
  9. 9.
    Nawaz MS, Franklin W, Cerniglia CE (1994)Environ Sci Technol 28: 1106CrossRefGoogle Scholar
  10. 10.
    Kumar A, Kumar A (1998)J Microbiol Biotechnol 8: 347Google Scholar
  11. 11.
    Nawaz MS, Khan AA, Seng JE, Leakey JE, Siitonen PH, Cerniglia CE (1994)Appl Environ Microbiol 60: 3343Google Scholar
  12. 12.
    Cavins JF, Friedman M (1968)J Biol Chem 143: 3357Google Scholar
  13. 13.
    Wikstrom P, Szwajcer E, Brodelius P, Nilsson K, Mossbach K (1982)Biotechnol Lett 4: 153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Vienna 2000

Authors and Affiliations

  • John Colby
    • 1
  • David Snella
    • 1
  • Gary W. Black
    • 1
  1. 1.School of SciencesUniversity of SunderlandUK

Personalised recommendations