Advertisement

Prion Diseases pp 265-273 | Cite as

Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro

  • K. Post
  • D. R. Brown
  • M. Groschup
  • H. A. Kretzschmar
  • D. Riesner
Chapter
Part of the Archives of Virology. Supplementa book series (ARCHIVES SUPPL, volume 16)

Summary

Prion diseases include Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy. The hallmark of prion diseases is the accumulation of an abnormal isoform (PrPSc) of the cellular prion protein accompanied by neuronal cell death and astroglial proliferation. To characterize the correlation between PrP secondary and quarternary structure and their biological effects we assayed soluble and aggregated forms of PrP 27–30, the N-terminal truncated form of PrPSc, as well as the corresponding recombinant PrP(90–231) for their neurotoxicity and infectivity. PrP was kept soluble in 0.2% SDS and subsequently reaggregated either by diluting the SDS or by adding acetonitril. The neurotoxicity of the re-aggregated states were comparable to that of prion rods (PrP 27–30) whereas the soluble forms had no neurotoxic effects. The solubilized PrP 27–30 showed no significant infection upon re-aggregation as determined by bioassays in Syrian golden hamsters. The recombinant PrP did not exhibit infectivity in any state.

Keywords

Prion Protein Prion Disease Neurotoxic Effect Bovine Spongiform Encephalopathy Syrian Golden Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown DR (2000) Neuronal release of vasoactive intestinal peptide is important to astrocytic protection of neurons from glutamate toxicity. Mol Cell Neurosci 15: 465–475PubMedCrossRefGoogle Scholar
  2. 2.
    Brown DR, Pitschke M, Riesner D, Kretzschmar H (1998) Cellular effects of a neurotoxic prion protein peptide are related to its ß-sheet content. Neurosci Res Commun 23: 119–128CrossRefGoogle Scholar
  3. 3.
    Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von-Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 39: 684–687Google Scholar
  4. 4.
    Brown DR, Schmidt B, Kretzschmar HA (1996) A neurotoxic prion protein fragment enhances proliferation of microglia but not astrocytes in culture. Glia 18: 59–67PubMedCrossRefGoogle Scholar
  5. 5.
    Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380: 345–347PubMedCrossRefGoogle Scholar
  6. 6.
    Forloni G, Angretti N, Chiesa R, Monzani E, Samona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362: 543–546PubMedCrossRefGoogle Scholar
  7. 7.
    Forloni G, Tagliavini F, Bugiani O, Salmona M (1996) Amyloid in Alzheimer’s disease and prion-related encephalopathies: studies with synthetic peptides. Progr Neurobiol 49: 287–315Google Scholar
  8. 8.
    Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8: 449–457PubMedCrossRefGoogle Scholar
  9. 9.
    Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein in vitro lacks detectable infectivity. J Gen Virol 80: 11–14PubMedGoogle Scholar
  10. 10.
    Kaneko K, Peretz D, Pan K-M, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen F, Balwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptide induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Aci USA 92: 11160–11164CrossRefGoogle Scholar
  11. 11.
    Kaneko K, Wille H, Mehlhorn I, Zhang H, Ball H, Cohen FE, Baldwin MA, Prusiner SB (1997a) Molecular properties of complexes formed between the prion protein and synthetic peptides. J Mol Biol 270: 547–586CrossRefGoogle Scholar
  12. 12.
    Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370: 471–474PubMedCrossRefGoogle Scholar
  13. 13.
    Mehlhorn I, Groth D, Stöckel J, Moffat B, Reilly D, Yansuro D, Willet WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB (1996) High-level expression and characterisation of a purified 142-residue polypeptide of the prion protein. Biochemistry 35: 5528–5537PubMedCrossRefGoogle Scholar
  14. 14.
    Post K, Pitschke M, Schäfer O, Wille H, Appel TR, Kirsch D, Mehlhorn I, Serban H, Prusiner SB, Riesner D (1998) Rapid acquisition of ß-sheet structure in the prion protein prior to multimer formation. J Biol Chem 379: 1307–1317Google Scholar
  15. 15.
    Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515–1522PubMedCrossRefGoogle Scholar
  16. 16.
    Prusiner SB, Cochran SP, Groth DF, Downey DE, Bowman KA, Martinez HM (1982) Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11: 353–358PubMedCrossRefGoogle Scholar
  17. 17.
    Prusiner SB, Mc Kinley MP, Bowman KA, Bolton DC, Bendheim PE, Grothe DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35: 349–358PubMedCrossRefGoogle Scholar
  18. 18.
    Riesner D, Kellings K, Post K, Wille H, Serban H, Groth D, Baldwin MB, Prusiner SB (1996) Disruption of prion rods generate 10-nm spherical particles having high α-helical content and lacking scrapie infectivity. J Virol 70: 1714–1722PubMedGoogle Scholar
  19. 19.
    Stege GJJ, Renkawek K, Overkamp PSG, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJGM, DeJong WW (1999) The molecular chaperone α-crystallin enhances amyloid ß neurotoxicity. Biochem Biophys Res Commun 262: 152–156PubMedCrossRefGoogle Scholar
  20. 20.
    Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Bendek GB, Selkoe DJ, Teplow DB (1999) Amyloid ß-protein fibrillogenesis. J Biol Chem 274: 25945–25952PubMedCrossRefGoogle Scholar
  21. 21.
    Wille H, Zhang G-F, Baldwin MA, Cohen FE, Prusiner SB (1996) Separation of scrapie prion infectivity from PrP amyloid polymers. J Mol Biol 259: 608–621PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • K. Post
    • 1
  • D. R. Brown
    • 2
  • M. Groschup
    • 3
  • H. A. Kretzschmar
    • 4
  • D. Riesner
    • 1
  1. 1.Institut für Physikalische BiologieHeinrich-Heine Universität DüsseldorfDüsseldorfGermany
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK
  3. 3.Bundesforschungsanstalt für Viruskrankheiten der TiereTübingenGermany
  4. 4.Department of NeuropathologyUniversität GöttingenGöttingenGermany

Personalised recommendations