Interactive Rendering with Real-World Illumination

  • Simon Gibson
  • Alan Murta
Part of the Eurographics book series (EUROGRAPH)


We propose solutions for seamlessly integrating synthetic objects into background photographs at interactive rates. Recently developed image-based methods are used to capture real-world illumination, and sphere-mapping is used illuminate and render the synthetic objects. We present a new procedure for approximating shadows cast by the real-world illumination using standard hardware-based shadow mapping, and a novel image composition algorithm that uses frame-buffer hardware to correctly overlay the synthetic objects and their shadows onto the background image. We show results of an OpenGL implementation of the algorithm that is capable of rendering complex synthetic objects and their shadows at rates of up to 10 frames per second on an SGI Onyx2.


Augmented Reality Background Image Global Illumination Shadow Mapping Local Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azuma, R. T. A survey of augmented reality. Presence: Teleoperators and Virtual Environments6, 4 (August 1997), 355–385.Google Scholar
  2. 2.
    Blinn, J. F., and Newell, M. E. Texture and reflection in computer generated images. Communications of the ACM19, 10 (October 1976), 542–546.CrossRefGoogle Scholar
  3. 3.
    Boisvert, R. F., Howe, S. E., and Kahaner, D. K. NBS core math library (CMLIB), April 1998. Version 3.0, Center for Applied Mathematics, NBS, Scholar
  4. 4.
    Cabral, B., Olano, M., and Nemec, P. Reflection space image based rendering. Proceedings of SIG-GRAPH99 (August 1999), 165–170.Google Scholar
  5. 5.
    Debevec, P. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. Proceedings of SIGGRAPH98 (July 1998), 189–198.Google Scholar
  6. 6.
    Debevec, P. E., and Malik, J. Recovering high dynamic range radiance maps from photographs. Proceedings of SIGGRAPH97 (August 1997), 369–378.CrossRefGoogle Scholar
  7. 7.
    Diefenbach, P. J., and Badler, N. I. Multi-pass pipeline rendering: Realism for dynamic environments. 7997 Symposium on Interactive 3D Graphics (April 1997), 59–70.Google Scholar
  8. 8.
    Drettakis, G., Robert, L., and Bougnoux, S. Interactive common illumination for computer augmented reality. Eurographics Rendering Workshop1997 (June 1997), 45–56.CrossRefGoogle Scholar
  9. 9.
    Fournier, A., Gunawan, A. S., and Romanzin, C. Common illumination between real and computer generated scenes. In Proceedings of Graphics Interface ’93 (San Francisco, CA, May 1993), Morgan Kaufmann, pp. 254–262.Google Scholar
  10. 10.
    Gibson, S., and Murta, A. Interactive Rendering with Real-World Illumination. Technical Report UMCS-00–3-2, University of Manchester, Department of Computer Science, March 2000.–3-2.html Google Scholar
  11. 11.
    Goral, C. M., Torrance, K. E., Greenberg, D. R, and Battaile, B. Modelling the interaction of light between diffuse surfaces. In Computer Graphics (ACM SIGGRAPH ’84 Proceedings) (July 1984), vol. 18, pp. 212–222.Google Scholar
  12. 12.
    Greene, N. Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications6, 11 (November 1986), 21–29.CrossRefGoogle Scholar
  13. 13.
    Haeberli, P., and Akeley, K. The accumulation buffer: Hardware support for high-quality rendering. Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August 1990), 309–318.CrossRefGoogle Scholar
  14. 14.
    Heidrich, W., and Seidel, H.-P. View-independent environment maps. 1998 SIGGRAPH/Eurographics Workshop on Graphics (August 1998), 39–46.Google Scholar
  15. 15.
    Heidrich, W., and Seidel, H.-P. Realistic, hardware-accelerated shading and lighting. Proceedings of SIGGRAPH99 (August 1999), 171–178.Google Scholar
  16. 16.
    Kajiya, J. T. The rendering equation. In Computer Graphics (ACM SIGGRAPH ’86 Proceedings) (August 1986), vol. 20, pp. 143–150.Google Scholar
  17. 17.
    Kempf, R., and Donnelly, J. H. Open GL on Silicon Graphics systems, June 1998. Scholar
  18. 18.
    Lewis, R. R. Making shaders more physically plausible. In Fourth Eurographics Workshop on Rendering (Paris, France, June 1993), no. Series EG 93 RW, pp. 47–62.Google Scholar
  19. 19.
    Loscos, C., Frasson, M.-C., Drettakis, G., Walter, B., Granier, X., and Poulin, P. Interactive virtual relighting and remodeling of real scenes. Eurographics Rendering Workshop1999 (June 1999).Google Scholar
  20. 20.
    Nakamae, E., Harada, K., Ishizaki, T., and Nishita, T. A montage method: The overlaying of the computer generated images onto a background photograph. Computer Graphics (Proceedings of SIGGRAPH 86) 20, 4 (August 1986), 207–214.CrossRefGoogle Scholar
  21. 21.
    Poulin, P., and Fournier, A. Painting surface characteristics. Eurographics Rendering Workshop1995 (June 1995), 160–169.CrossRefGoogle Scholar
  22. 22.
    Poulin, P., Ratib, K., and Jacques, M. Sketching shadows and highlights to position lights. Computer Graphics International1997 (June 1997).Google Scholar
  23. 23.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipies in C.: The Art of Scientific Computing, 2nd ed. ed. Cambridge University Press, Cambridge, NY, 1992.Google Scholar
  24. 24.
    Reeves, W. T., Salesin, D. H., and Cook, R. L. Rendering antialiased shadows with depth maps. Computer Graphics (Proceedings of SIGGRAPH 87) 21, 4 (July 1987), 283–291.CrossRefGoogle Scholar
  25. 25.
    Sato, I., Sato, Y., and Ikeuchi, K. Acquiring a radiance distribution to superimpose virtual objects onto a real scene. IEEE Transactions on Visualization and Computer Graphics 5, 1 (January–March 1999), 1–12.CrossRefGoogle Scholar
  26. 26.
    Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., and Haeberli P. E. Fast shadows and lighting effects using texture mapping. Computer Graphics (Proceedings of SIGGRAPH 92) 26, 2 (July 1992), 249–252.CrossRefGoogle Scholar
  27. 27.
    State, A., Hirota, G., Chen, D. T., Garrett, B., and Livingston, M. Superior augmented reality registration by integrating landmark tracking and magnetic tracking. Proceedings of SIGGRAPH96 (August 1996), 429–438.Google Scholar
  28. 28.
    Thompson, W. B., Shirley, P., Smits, B., Kersten, D. J., and Madison, C. Visual glue. Technical Report UUCS-98–007, University of Utah, March 1998.Google Scholar
  29. 29.
    Tsai, R. Y. A versatile camera calibration technique for high accuracy machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation3, 4 (August 1987), 323–344.CrossRefGoogle Scholar
  30. 30.
    Walter, B., Alppay, G., Lafortune, E. P. F., Fernandez, S., and Greenberg D. P. Fitting virtual lights for non-diffuse walkthroughs. Proceedings of SIGGRAPH97 (August 1997), 45–48.CrossRefGoogle Scholar
  31. 31.
    Ward, G. J. The RADIANCE lighting simulation and rendering system. Proceedings of SIGGRAPH94 (July 1994), 459–472.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Simon Gibson
    • 1
  • Alan Murta
    • 1
  1. 1.Advanced Interfaces Group, Department of Computer ScienceUniversity of ManchesterUK

Personalised recommendations