Dynamic Acceleration Structures for Interactive Ray Tracing

  • Erik Reinhard
  • Brian Smits
  • Charles Hansen
Part of the Eurographics book series (EUROGRAPH)


Acceleration structures used for ray tracing have been designed and optimized for efficient traversal of static scenes. As it becomes feasible to do interactive ray tracing of moving objects, new requirements are posed upon the acceleration structures. Dynamic environments require rapid updates to the acceleration structures. In this paper we propose spatial subdivisions which allow insertion and deletion of objects in constant time at an arbitrary position, allowing scenes to be interactively animated and modified.


Leaf Node Ground Plane Static Scene Bound Volume Hierarchy Acceleration Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Amanatides and A. Woo, A fast voxel traversal algorithm for ray tracing, in Eurographics ’87, Elsevier Science Publishers, Amsterdam, North-Holland, Aug. 1987, pp. 3–10.Google Scholar
  2. 2.
    K. Bala, J. Dorsey, and S. Teller, Interactive Ray Traced Scene Editing using Ray Segment Tree, in Rendering Techniques ’99, pp. 31–44. Springer-Verlag, 1999.CrossRefGoogle Scholar
  3. 3.
    A. Fujimoto, T. Tanaka, and K. Iwata, ARTS: Accelerated ray tracing system, IEEE Computer Graphics and Applications, 6 (1986), pp. 16–26.CrossRefGoogle Scholar
  4. 4.
    V. Gaede and O. Günther, Multidimensional access methods, ACM Computing Surveys, 30 (1998), pp. 170–231.CrossRefGoogle Scholar
  5. 5.
    A. S. Glassner, ed., An Introduction to Ray Tracing, Academic Press, 1989.MATHGoogle Scholar
  6. 6.
    A. S. Glassner, Space subdivision for fast ray tracing, IEEE Computer Graphics and Applications, 4 (1984), pp. 15–22.Google Scholar
  7. 7.
    A. S. Glassner, Spacetime ray tracing for animation, IEEE Computer Graphics and Applications, 8 (1988), pp. 60–70.CrossRefGoogle Scholar
  8. 8.
    M. J. Muuss, Towards real-time ray-tracing of combinatorial solid geometric models, in Proceedings of BRL-CAD Symposium, June 1995.Google Scholar
  9. 9.
    S. Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, and C. Hansen, Interactive ray tracing, in Symposium on Interactive 3D Computer Graphics, April 1999.Google Scholar
  10. 10.
    B. Smits, Efficiency issues for ray tracing, Journal of Graphics Tools, 3 (1998), pp. 1–14.CrossRefGoogle Scholar
  11. 11.
    J. Spackman and P. Willis, The SMART navigation of a ray through an octtree, Computers and Graphics, 15 (1991), pp. 185–194.CrossRefGoogle Scholar
  12. 12.
    K. Sung, A DDA octree traversal algorithm for ray tracing, in Eurographics ’91, W. Purgathofer, ed., North-Holland, sept 1991, pp. 73–85.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Erik Reinhard
    • 1
  • Brian Smits
    • 1
  • Charles Hansen
    • 1
  1. 1.University of UtahUSA

Personalised recommendations