Skip to main content

Metropolis Light Transport for Participating Media

  • Conference paper
  • First Online:
Rendering Techniques 2000 (EGSR 2000)

Part of the book series: Eurographics ((EUROGRAPH))

Included in the following conference series:

Abstract

In this paper we show how Metropolis Light Transport can be extended both in the underlying theoretical framework and the algorithmic implementation to incorporate volumetric scattering. We present a generalization of the path integral formulation that handles anisotropic scattering in non-homogeneous media. Based on this framework we introduce a new mutation strategy that is specifically designed for participating media. Our algorithm includes effects such as volume caustics and multiple volume scattering, is not restricted to certain classes of geometry and scattering models and has minimal memory requirements. Furthermore, it is unbiased and robust, in the sense that it produces satisfactory results for a wide range of input scenes and lighting situations within acceptable time bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arvo, Transfer Functions in Global Illumination, ACM SIGGRAPH ’93 Course Notes — Global Illumination, 1993, pp. 1–28.

    Google Scholar 

  2. N. Bhate, Application of Rapid Hierarchical Radiosity to Participating Media, Proceedings of ATARV-93: Advanced Techniques in Animation, Rendering, and Visualization (1993), 43–53.

    Google Scholar 

  3. P. Blasi, B. Le Saec, and C. Schlick, A Rendering Algorithm for Discrete Volume Density Objects, Computer Graphics Forum (Eurographics ’93) 12 (1993), no. 3, C201–C210.

    Article  Google Scholar 

  4. N. Bhate and A. Tokuta, Photorealistic Volume Rendering of Media with Directional Scattering, Third Eurographics Workshop on Rendering (1992), 227–245.

    Google Scholar 

  5. S. Chandrasekhar, Radiative Transfer, Clarendon Press, Oxford, UK, 1950.

    MATH  Google Scholar 

  6. E. Hlawka and R. Mück, Über eine Transformation von gleichverteilten Folgen II, Computing (1972), no. 9, 127–138.

    Google Scholar 

  7. H. Jensen and P. Christensen, Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps, SIGGRAPH 98 Conference Proceedings (Michael Cohen, ed.), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, July 1998, pp. 311–320.

    Chapter  Google Scholar 

  8. A. Keller, Quasi-Monte Carlo Methods for Photorealistic Image Synthesis, Ph.D. thesis, Shaker Verlag Aachen, 1998.

    Google Scholar 

  9. J. Kajiya and B. Von Herzen, Ray Tracing Volume Densities, Computer Graphics (ACM SIGGRAPH ’84 Proceedings) 18 (1984), no. 3, 165–174.

    Article  Google Scholar 

  10. A. Keller and I. Wald, Efficient importance sampling techniques for the photon map, Interner Bericht 302/00, University of Kaiserslautern, 2000.

    Google Scholar 

  11. E. Languenou, K. Bouatouch, and M. Chelle, Global Illumination in Presence of Participating Media with General Properties, Fifth Eurographics Workshop on Rendering (1994), 69–85.

    Google Scholar 

  12. E. Lafortune and Y. Willems, Rendering Participating Media with Bidirectional Path Tracing, Rendering Techniques ’96 (Proc. 7th Eurographics Workshop on Rendering) (1996), 91–100.

    Google Scholar 

  13. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computation machines, Journal of Chemical Physics 21 (1953), 1087–1092.

    Article  Google Scholar 

  14. K. Perlin and E. Hoffert, Hypertexture, Computer Graphics (SIGGRAPH Journal, vol.23), 1989, pp. 253–262.

    Article  Google Scholar 

  15. S. Pattanaik and S. Mudur, Computation of Global Illumination in a Participating Medium by Monte Carlo Simulation, The Journal of Visualization and Computer Animation 4 (1993), no. 3, 133–152.

    Article  Google Scholar 

  16. I. Peter and G. Pietrek, Importance driven Construction of Photon Maps, Rendering Techniques ’98, 1998, pp. 269–280.

    Google Scholar 

  17. H. Rushmeier and K. Torrance, The Zonal Method for Calculating Light Intensities in the Presence of a Participating Medium, Computer Graphics (ACM SIGGRAPH ’87 Proceedings) 21 (1987), no. 4, 293–302.

    Article  Google Scholar 

  18. H. Rushmeier, Rendering Participating Media: Problems and Solutions from Application Areas, Fifth Eurographics Workshop on Rendering (1994), 35–56.

    Google Scholar 

  19. F. Sillion, A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and Object Clusters, IEEE Transactions on Visualization and Computer Graphics 1 (1995), no. 3.

    Book  Google Scholar 

  20. P. Shirley, C. Wang, and K. Zimmerman, Monte Carlo Techniques for Direct Lighting Calculations, ACM Trans. Graphics 15 (1996), no. 1, 1–36.

    Article  Google Scholar 

  21. E. Veach, Robust monte carlo methods for light transport simulation, Ph.D. thesis, Stanford University, 1997.

    Google Scholar 

  22. E. Veach and L. Guibas, Optimally Combining Sampling Techniques for Monte Carlo Rendering, SIGGRAPH 95 Conference Proceedings, Annual Conference Series, 1995, pp. 419–428.

    Google Scholar 

  23. E. Veach and L. Guibas, Metropolis light transport, SIGGRAPH 97 Conference Proceedings (Turner Whitted, ed.), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, August 1997, pp. 65–76.

    Chapter  Google Scholar 

  24. G. Ward, Adaptive Shadow Testing for Ray Tracing, 2nd Eurographics Workshop on Rendering (Barcelona, Spain), 1991.

    Google Scholar 

  25. G. Ward, Measuring and Modeling Anisotropic Reflection, Computer Graphics (SIGGRAPH 92 Conference Proceedings), 1992, pp. 265 – 272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Pauly, M., Kollig, T., Keller, A. (2000). Metropolis Light Transport for Participating Media. In: Péroche, B., Rushmeier, H. (eds) Rendering Techniques 2000. EGSR 2000. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6303-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6303-0_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83535-7

  • Online ISBN: 978-3-7091-6303-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics