Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling

  • W. G. Tatton
  • R.M.E. Chalmers-Redman
  • M. Elstner
  • W. Leesch
  • F. B. Jagodzinski
  • D. P. Stupak
  • M.M. Sugrue
  • N. A. Tatton
Conference paper


Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic enzyme that plays a key role in energy metabolism. GAPDH catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3bisphosphoglycerate in the glycolytic pathway. As part of the conversion, GAPDH converts NAD+ to the high-energy electron carrier NADH. GAPDH has been referred to as a “housekeeping” protein and based on the view that GAPDH gene expression remains constant under changing cellular conditions, the levels of GAPDH mRNA have frequently been used to normalize northern blots. In recent years, that view has changed since GAPDH is now known to contribute to a number of diverse cellular functions unrelated to glycolysis. Normative functions of GAPDH now include nuclear RNA export, DNA replication, DNA repair, exocytotic membrane fusion, cytoskeletal organization and phosphotransferase activity. Pathologically, GAPDH has been implicated in apoptosis, neurodegenerative disease, prostate cancer and viral pathogenesis (see Sirover (1999) for a recent review of GAPDH functions). Most recently, it has been shown that GAPDH is a target for deprenyl related compounds (Carlile et al., 2000; Kragten et al., 1998) and may contribute to the neuroprotection offered by those compounds.


PC12 Cell Facial Motoneuron Nuclear Chromatin Condensation Substantia Nigra Compacta Apoptotic Neurodegeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer’s disease. Brain Res 849: 67–77PubMedCrossRefGoogle Scholar
  2. Amenta F, Bograni S, Cadel S, Ferrante F, Valsecchi B, Vega JA (1994a) Microanatomical changes in the frontal cortex of aged rats: effect of L-deprenyl treatment. Brain Res Bull 34: 125–131PubMedCrossRefGoogle Scholar
  3. Amenta F, Bongrani S, Cadel S, Ferrante F, Valsecchi B, Zeng YC (1994b) Influence of treatment with L-deprenyl on the structure of the cerebellar cortex of aged rats. Mech Ageing Dev 75: 157–167PubMedCrossRefGoogle Scholar
  4. Amenta F, Bongrani S, Cadel S, Ricci A, Valsecchi B, Zeng YC (1994c) Neuroanatomy of aging brain. Influence of treatment with L-deprenyl. Ann N Y Acad Sci 717: 3344CrossRefGoogle Scholar
  5. Anderson AJ, Su JH, Cotman CW (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16: 1710–1719PubMedGoogle Scholar
  6. W. G. Tatton et al.Google Scholar
  7. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31PubMedGoogle Scholar
  8. Ansari KS, Yu PH, Kruck TP, Tatton WG (1993) Rescue of axotomized immature rat facial motoneurons by R(-)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13: 4042–4053PubMedGoogle Scholar
  9. Baba N, Koji T, Itoh M, Mizuno A (1999) Reciprocal changes in the expression of Bcl-2 and Bax in hypoglossal nucleus after axotomy in adult rats: possible involvement in the induction of neuronal cell death. Brain Res 827: 122–129PubMedCrossRefGoogle Scholar
  10. Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease [In Process Citation]. Mov Disord 13: 221–227PubMedCrossRefGoogle Scholar
  11. Barinaga M (1996) An intriguing new lead on Huntington’s disease. Science 271: 1233–1234Google Scholar
  12. Blum D, Wu Y, Nissou MF, Arnaud S, Alim Louis B, Verna JM (1997) p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res 751: 139–142PubMedCrossRefGoogle Scholar
  13. Borden KL (1998) Structure/function in neuroprotection and apoptosis. Ann Neurol 44: S65–71PubMedGoogle Scholar
  14. Borden KLB, Campbell-Dwyer EJ, Salvato MS (1988) An arenavirus RING (zinc-binding) protein binds the oncoprotein PML and relocates PML nuclear bodies to the cytoplasm. J Virol 72: 758–766Google Scholar
  15. Borden KLB, Campbell-Dwyer EJ, Salvato MS (1997) The promyelocytic leukemia protein PML has a pro-apoptotic acitvity mediated through its RING. Febs Lett 418: 30–34PubMedCrossRefGoogle Scholar
  16. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41: 646–653PubMedCrossRefGoogle Scholar
  17. Brustugun OT, Fladmark KE, SO Ds, Orrenius S, Zhivotovsky B (1998) Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bc1–2. Cell Death Differ 5: 1–2PubMedCrossRefGoogle Scholar
  18. Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, Strittmatter WJ (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2: 347–350PubMedCrossRefGoogle Scholar
  19. Burns RS, Markey SP, Phillips JM, Chiueh CC (1984) The neurotoxicity of 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine in the monkey and man. Can J Neurol Sci 11: 166–168PubMedGoogle Scholar
  20. Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55: 981–988PubMedCrossRefGoogle Scholar
  21. Buys YM, Trope GE, Tatton WG (1995) (-)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14: 119–126PubMedCrossRefGoogle Scholar
  22. Carlile GW, Tatton WG, Borden KL (1998) Demonstration of a RNA-dependent nuclear interaction between the promyelocytic leukaemia protein and glyceraldehyde-3phosphate dehydrogenase. Biochem J 335: 691–696PubMedGoogle Scholar
  23. Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57: 2–12PubMedGoogle Scholar
  24. Cassarino DS, Parks JK, Parker WD, Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453: 49–62PubMedCrossRefGoogle Scholar
  25. Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG (1997) Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 40: 1–25PubMedCrossRefGoogle Scholar
  26. Chalmers-Redman RM, Fraser AD, Carlile GW, Pong A, Tatton WG (1999) Glucose protection from MPP+-induced apoptosis depends on mitochondrial membrane potential and ATP synthase. Biochem Biophys Res Commun 257: 440–447PubMedCrossRefGoogle Scholar
  27. Chang GD, Ramirez VD (1986) The mechanism of action of MPTP and MPP+ on endogenous dopamine release from the rat corpus striatum superfused in vitro. Brain Res 368: 134–140PubMedCrossRefGoogle Scholar
  28. Chen RW, Saunders PA, Wei H, Li Z, Seth P, Chuang DM (1999) Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J Neurosci 19: 9654–9662PubMedGoogle Scholar
  29. Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 574–578PubMedCrossRefGoogle Scholar
  30. Chiueh CC, Wu RM, Mohanakumar KP, Sternberger LM, Krishna G, Obata T, Murphy DL (1994) In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann N Y Acad Sci 738: 25–36PubMedCrossRefGoogle Scholar
  31. Cohen G, Spina MB (1989) Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26: 689–690PubMedCrossRefGoogle Scholar
  32. Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, Yahr MD (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210PubMedCrossRefGoogle Scholar
  33. Cooper AJ, Sheu KF, Burke JR, Strittmatter WJ, Blass JP (1998) Glyceraldehyde 3-phosphate dehydrogenase abnormality in metabolically stressed Huntington disease fibroblasts. Dev Neurosci 20: 462–468PubMedCrossRefGoogle Scholar
  34. Copin JC, Reola LF, Chan TY, Li Y, Epstein CJ, Chan PH (1996) Oxygen deprivation but not a combination of oxygen, glucose, and serum deprivation induces DNA degradation in mouse cortical neurons in vitro: attenuation by transgenic overexpression of CuZn-superoxide dismutase. J Neurotrauma 13: 233–244PubMedCrossRefGoogle Scholar
  35. Cotman CW, Whittemore ER, Watt JA, Anderson AJ, Loo DT (1994) Possible role of apoptosis in Alzheimer’s disease. Ann N Y Acad Sci 747: 36–49PubMedCrossRefGoogle Scholar
  36. de Bilbao F, Dubois-Dauphin M (1996) Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bd-2 transgenic mice. Neuroscience 71: 1111–1119PubMedCrossRefGoogle Scholar
  37. de la Monte SM, Sohn YK, Wands JR (1997) Correlates of p53- and Fas (CD95)mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152: 73–83PubMedCrossRefGoogle Scholar
  38. de la Monte SM, Sohn YK, Ganju N, Wands JR (1998) P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78: 401–411PubMedGoogle Scholar
  39. Desole MS, Sciola L, Delogu MR, Sircana S, Migheli R, Miele E (1997) Role of oxidative stress in the manganese and 1-methyl-4-(2’-ethylphenyl)-1,2,3,6-tetrahydropyridineinduced apoptosis in PC12 cells. Neurochem Int 31: 169–176PubMedCrossRefGoogle Scholar
  40. Di Monte D, Sandy MS, Blank L, Smith MT (1988) Fructose prevents 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP)-induced ATP depletion and toxicity in isolated hepatocytes. Biochem Biophys Res Commun 153: 734–740PubMedCrossRefGoogle Scholar
  41. Dipasquale B, Marini AM, Youle RJ (1991) Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem Biophys Res Commun 181: 1442–1448PubMedCrossRefGoogle Scholar
  42. Dragunow M, Beilharz E, Sirimanne E, Lawlor P, Williams C, Bravo R, Gluckman P (1994) Immediate-early gene protein expression in neurons undergoing delayed death, but not necrosis, following hypoxic-ischaemic injury to the young rat brain. Brain Res Mol Brain Res 25: 19–33PubMedCrossRefGoogle Scholar
  43. Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6: 1053–1057PubMedCrossRefGoogle Scholar
  44. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem 63: 584–591PubMedCrossRefGoogle Scholar
  45. Fahn S (1996) Controversies in the therapy of Parkinson’s disease. Adv Neurol 69: 477–486PubMedGoogle Scholar
  46. Fall CP, Bennett JP Jr (1999) Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55: 620–628PubMedCrossRefGoogle Scholar
  47. Fang J, Zuo DM, Yu PH (1995) Lack of protective effect of R(¡ª)-deprenyl on programmed cell death of mouse thymocytes induced by dexamethasone. Life Sci 57: 15–22PubMedCrossRefGoogle Scholar
  48. Felner AE, Waldmeier PC (1979) Cumulative effects of irreversible MAO inhibitors in vivo. Biochem Pharmacol 28: 995–1002PubMedCrossRefGoogle Scholar
  49. Fernandez-Checa JC, Garcia-Ruiz C, Colell A, Morales A, Mari M, Miranda M, Ardite E (1998) Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 8: 7–11PubMedCrossRefGoogle Scholar
  50. Finnegan KT, Skratt JJ, Irwin I, DeLanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 184: 119–126PubMedCrossRefGoogle Scholar
  51. Fuller RW, Hemrick-Luecke SK, Perry KW (1988) Deprenyl antagonizes acute lethality of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Pharmacol Exp Ther 247: 531–535PubMedGoogle Scholar
  52. Gabellieri E, RahuelClermont S, Branlant G, Strambini GB (1996) Effects of NAD(+) binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3phosphate dehydrogenase from Bacillus stearothermophilus. Biochemistry 35: 12549–12559PubMedCrossRefGoogle Scholar
  53. Garrah JM, Bisby MA, Rossiter JP (1998) Immunolabelling of the cytoplasm and processes of apoptotic facial motoneurons following axotomy in the neonatal rat. Acta Neuropathol (Berl) 95: 223–228CrossRefGoogle Scholar
  54. Gelowitz DL, Paterson IA (1999) Neuronal sparing and behavioral effects of the antiapoptotic drug, (¡ª)deprenyl, following kainic acid administration. Pharmacol Biochem Behav 62: 255–262PubMedCrossRefGoogle Scholar
  55. Gibb WR, Costall B, Domeney AM, Kelly ME, Naylor RJ (1988) The histological effects of intracerebral injection or infusion of MPTP (1-methyl-4-phenyl-1,2,3,6tetrahydropyridine) and MPP+ (1-methyl-4-phenylpyridinium) in rat and mouse. Brain Res 461: 361–366PubMedCrossRefGoogle Scholar
  56. Grosse F, Manns A (1993) Terminal deoxyribonucleotidyl transferase (EC In: Burrell (ed) Methods in molecular biology, Vol 16. Humana Press, Totowa, 95105Google Scholar
  57. Group TPS (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328: 176–183CrossRefGoogle Scholar
  58. Hill IE, MacManus JP, Rasquinha I, Tuor UI (1995) DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res 676: 398–403PubMedCrossRefGoogle Scholar
  59. Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14: 383–385PubMedCrossRefGoogle Scholar
  60. Ishitani R, Chuang DM (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci U S A 93: 9937–9941PubMedCrossRefGoogle Scholar
  61. Ishitani R, Kimura M, Sunaga K, Katsube N, Tanaka M, Chuang DM (1996a) An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther 278: 447–454PubMedGoogle Scholar
  62. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996b) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66: 928–935PubMedCrossRefGoogle Scholar
  63. Ishitani R, Tanaka M, Sunaga K, Katsube N, Chuang DM (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53: 701–707PubMedGoogle Scholar
  64. Itoga M, Tsuchiya M, Ishino H, Shimoyama M (1997) Nitric oxide-induced modification of glyceraldehyde-3-phosphate dehydrogenase with NAD(+) is not ADPribosylation. J Biochemistry 121: 1041–1046CrossRefGoogle Scholar
  65. Iwasaki Y, Ikeda K, Shiojima T, Kobayashi T, Tagaya N, Kinoshita M (1996) Deprenyl and pergolide rescue spinal motor neurons from axotomy-induced neuronal death in the neonatal rat. Neurol Res 18: 168–170PubMedGoogle Scholar
  66. Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44: S72–84PubMedGoogle Scholar
  67. Ju WY, Holland DP, Tatton WG (1994) (¡ª)-Deprenyl alters the time course of death of axotomized facial motoneurons and the hypertrophy of neighboring astrocytes in immature rats. Exp Neurol 126: 233–246PubMedCrossRefGoogle Scholar
  68. Kaseda S, Nomoto M, Iwata S (1999) Effect of selegiline on dopamine concentration in the striatum of a primate. Brain Res 815: 44–50PubMedCrossRefGoogle Scholar
  69. Kass GEN, Eriksson JE, Weiss M, Orrenius S, Chow SC (1996) Chromatin condensation during apoptosis requires ATP. Biochem J 318: 749–752PubMedGoogle Scholar
  70. Kerr JFR (1971) Shrinkage necrosis: a distinct form of cell death. J Pathol 105: 13–20 Kingsbury AE, Mardsen CD, Foster OJ (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 13–20Google Scholar
  71. Kish SJ, Lopes-Cendes I, Guttman M, Furukawa Y, Pandolfo M, Rouleau GA, Ross BM, Nance M, Schut L, Ang L, DiStefano L (1998) Brain glyceraldehyde-3-phosphate dehydrogenase activity in human trinucleotide repeat disorders. Arch Neurol 55: 1299–1304PubMedCrossRefGoogle Scholar
  72. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232: 418–421PubMedCrossRefGoogle Scholar
  73. Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA, Perry G, Whitehouse PJ, Taniguchi T (1998) Alteration of proteins regulating apoptosis, Bc1–2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780: 1–2PubMedCrossRefGoogle Scholar
  74. Klevenyi P, Andreassen O, Ferrante RJ, Schleicher JR, Jr, Friedlander RM, Beal MF (1999) Transgenic mice expressing a dominant negative mutant interleukin-lbeta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport 10: 635–638PubMedCrossRefGoogle Scholar
  75. Knollema S, Aukema W, Hom H, Korf J, ter Horst GJ (1995) L-deprenyl reduces brain damage in rats exposed to transient hypoxia-ischemia. Stroke 26: 1883–1887PubMedCrossRefGoogle Scholar
  76. Konradi C, Svoma E, Jellinger K, Riederer P, Denney R, Thibault J (1988) Topographic immunocytochemical mapping of monoamine oxidase-A, monoamine oxidase-B and tyrosine hydroxylase in human post mortem brain stem. Neuroscience 26: 791–802PubMedCrossRefGoogle Scholar
  77. Kosel S, Egensperger R, von Eitzen U, Mehraein P, Graeber MB (1997) On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol (Berl) 93: 105–108CrossRefGoogle Scholar
  78. Koutsilieri E, O’Callaghan JF, Chen TS, Riederer P, Rausch WD (1994) Selegiline enhances survival and neurite outgrowth of MPP(+)-treated dopaminergic neurons. Eur J Pharmacol 269: R3–4PubMedCrossRefGoogle Scholar
  79. Koutsilieri E, Chen TS, Rausch WD, Riederer P (1996) Selegiline is neuroprotective in primary brain cultures treated with 1-methyl-4-phenylpyridinium. Eur J Pharmacol 306: 181–186PubMedCrossRefGoogle Scholar
  80. Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Muller D, van Oostrum J, Waldmeier P, Furst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(¡ª)-deprenyl. J Biol Chem 273: 5821–5828PubMedCrossRefGoogle Scholar
  81. Kroemer G, Zamzami N, Susin SA (1997) Mitochondria) control of apoptosis. Immunol Today 18: 44–51PubMedCrossRefGoogle Scholar
  82. Lahtinen H, Koistinaho J, Kauppinen R, Haapalinna A, Keinanen R, Sivenius J (1997) Selegiline treatment after transient global ischemia in gerbils enhances the survival of CA1 pyramidal cells in the hippocampus. Brain Res 757: 260–267PubMedCrossRefGoogle Scholar
  83. W. G. Tatton et al.Google Scholar
  84. Landau WM (1990) Clinical neuromythology IX. Pyramid sale in the bucket shop: DATATOP bottoms out. Neurology 40: 1337–1339PubMedCrossRefGoogle Scholar
  85. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980PubMedCrossRefGoogle Scholar
  86. Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292: 390–394PubMedCrossRefGoogle Scholar
  87. Larsen JP, Boas J (1997) The effects of early selegiline therapy on long-term levodopa treatment and parkinsonian disability: an interim analysis of a Norwegian¡ªDanish 5-year study. Norwegian-Danish Study Group. Mov Disord 12: 175–182PubMedCrossRefGoogle Scholar
  88. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35–41PubMedCrossRefGoogle Scholar
  89. Le W, Jankovic J, Xie W, Kong R, Appel SH (1997b) (¡ª)-Deprenyl protection of 1methyl-4 phenylpyridium ion (MPP+)-induced apoptosis independent of MAO-B inhibition [published erratum appeared in Neurosci Lett 1997 May 30;228(1):67]. Neurosci Lett 224: 197–200Google Scholar
  90. LeBlanc A (1998) Detection of actin cleavage in Alzheimer’s disease. Am J Pathol 152: 329–332PubMedGoogle Scholar
  91. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J Biol Chem 274: 23426–23436PubMedCrossRefGoogle Scholar
  92. Lees AJ, Shaw KM, Kohout LJ, Stern GM, Elsworth JD, Sandler M, Youdim MB (1977) Deprenyl in Parkinson’s disease. Lancet 2: 791–795PubMedCrossRefGoogle Scholar
  93. LeWitt PA (1994) Clinical trials of neuroprotection in Parkinson’s disease: longterm selegiline and alpha-tocopherol treatment. J Neural Transm Suppl 43: 171–181PubMedGoogle Scholar
  94. Li L, Houenou LJ, Wu W, Lei M, Prevette DM, Oppenheim RW (1998) Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice. J Comp Neurol 396: 158–168PubMedCrossRefGoogle Scholar
  95. Lorenzo HK, Susin SA, Penninger J, Kroemer G (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6: 516–524PubMedCrossRefGoogle Scholar
  96. Lubec G, Labudova O, Cairns N, Fountoulakis M (1999) Increased glyceraldehyde 3-phosphate dehydrogenase levels in the brain of patients with Down’s syndrome. Neurosci Lett 260: 141–145PubMedCrossRefGoogle Scholar
  97. Lucassen PJ, Chung WC, Kamphorst W, Swaab DF (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 56: 887–900PubMedCrossRefGoogle Scholar
  98. MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, Williams C, Gluckman P, Faull RL, Hughes P, Dragunow M (1997a) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 750: 223–234PubMedCrossRefGoogle Scholar
  99. MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M (1997b) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147: 316–332PubMedCrossRefGoogle Scholar
  100. MacManus JP, Fliss H, Preston E, Rasquinha I, Tuor U (1999) Cerebral ischemia produces laddered DNA fragments distinct from cardiac ischemia and archetypal apoptosis. J Cereb Blood Flow Metab 19: 502–510PubMedCrossRefGoogle Scholar
  101. Magyar K, Szende B, Lengyel J, Tarczali J, Szatmary I (1998) The neuroprotective and neuronal rescue effects of (¡ª)-deprenyl. J Neural Transm Suppl 52: 109–123PubMedCrossRefGoogle Scholar
  102. Marcus DL, Strafaci JA, Miller DC, Masia S, Thomas CG, Rosman J, Hussain S, Freedman ML (1998) Quantitative neuronal c-fos and c-jun expression in Alzheimer’s disease. Neurobiol Aging 19: 393–400PubMedCrossRefGoogle Scholar
  103. Marin P, Maus M, Bockaert J, Glowinski J, Premont J (1995) Oxygen free radicals enhance the nitric oxide-induced covalent NAD(+)-linkage to neuronal glyceraldehyde-3-phosphate dehydrogenase. Biochem J 309: 891–898PubMedGoogle Scholar
  104. Marshall KA, Daniel SE, Cairns N, Jenner P, Halliwell B (1997) Upregulation of the antiapoptotic protein Bc1–2 may be an early event in neurodegeneration: studies on Parkinson’s and incidental Lewy body disease. Biochem Biophys Res Commun 240: 1–2PubMedCrossRefGoogle Scholar
  105. Maruyama W, Naoi M, Kasamatsu T, Hashizume Y, Takahashi T, Kohda K, Dostert P (1997) An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SYSY cells. J Neurochem 69: 322–329PubMedCrossRefGoogle Scholar
  106. Maruyama W, Takahashi T, Naoi M (1998) (¡ª)-Deprenyl protects human dopaminergic neuroblastoma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70: 2510–2515PubMedCrossRefGoogle Scholar
  107. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: A target for apoptosis regulation by caspases and Bc1–2-related proteins. J Exper Med 187: 1–2CrossRefGoogle Scholar
  108. Mazarakis ND, Edwards AD, Mehmet H (1997) Apoptosis in neural development and disease. Arch Dis Child Fetal Neonatal Ed 77: F165–170PubMedCrossRefGoogle Scholar
  109. Melnick A, Licht JD (1999) Reconstructing a disease: RARa, its fusion protein oartners and their roles in the pathogenesis of acute promyelocytic leukemia. Blood in pressGoogle Scholar
  110. Messmer UK, Brune B (1996) Modification of macrophage glyceraldehyde-3-phosphate dehydrogenase in response to nitric oxide. Eur J Pharmacol 302: 171–182PubMedCrossRefGoogle Scholar
  111. Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20: 4821–4826PubMedCrossRefGoogle Scholar
  112. Mizuno Y, Sone N, Saitoh T (1986) Dopaminergic neurotoxins mptp and mpp-+ inhibit activity of mitochondrial nadh-ubiquinone oxidoreductase. Proc Jpn Acad Ser B Phys Biol Sci 62: 261–263CrossRefGoogle Scholar
  113. Mizuno Y, Saitoh T, Sone N (1987) Inhibition of mitochondrial alpha-ketoglutarate dehydrogenase by 1-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 143: 971–976PubMedCrossRefGoogle Scholar
  114. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Comm 163: 1450–1455PubMedCrossRefGoogle Scholar
  115. Mizuno Y, Matuda S, Yoshino H, Mori H, Hattori N, Ikebe S (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35: 204–210PubMedCrossRefGoogle Scholar
  116. Mochizuki H, Nakamura N, Nishi K, Mizuno Y (1994) Apoptosis is induced by 1-methyl4-phenylpyridinium ion (MPP+) in ventral mesencephalic-striatal co-culture in rat. Neurosci Lett 170: 191–194PubMedCrossRefGoogle Scholar
  117. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123PubMedCrossRefGoogle Scholar
  118. Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996a) bc1–2 Protein is increased in the brain from parkinsonian patients. Neurosci Lett 215: 1–2PubMedGoogle Scholar
  119. Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996b) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220: 195–198PubMedCrossRefGoogle Scholar
  120. Myllyla VV, Sotaniemi KA, Vuorinen JA, Heinonen EH (1993) Selegiline in de novo parkinsonian patients: the Finnish study. Mov Disord 8: S41–44PubMedCrossRefGoogle Scholar
  121. Mytilineou C, Cohen G (1985) Deprenyl protects dopamine neurons from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion. J Neurochem 45: 1951–1953PubMedCrossRefGoogle Scholar
  122. Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow CW (1997) L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem 68: 33–39PubMedCrossRefGoogle Scholar
  123. Mytilineou C, Leonardi EK, Radcliffe P, Heinonen EH, Han SK, Werner P, Cohen G, Olanow CW (1998) Deprenyl and desmethylselegiline protect mesencephalic neurons from toxicity induced by glutathione depletion. J Pharmacol Exp Ther 284: 700–706Google Scholar
  124. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18: 565–571PubMedCrossRefGoogle Scholar
  125. Nagy E, Rigby WFC (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem 270: 2755–2763PubMedCrossRefGoogle Scholar
  126. Nagy Z, Esiri MM, Smith AD (1998) The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 87: 731–739PubMedCrossRefGoogle Scholar
  127. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36: 2503–2508PubMedCrossRefGoogle Scholar
  128. Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70: 2637–2640PubMedCrossRefGoogle Scholar
  129. Oh C, Murray B, Bhattacharya N, Holland D, Tatton WG (1994) (¡ª)-Deprenyl alters the survival of adult murine facial motoneurons after axotomy: increases in vulnerable C57BL strain but decreases in motor neuron degeneration mutants. J Neurosci Res 38: 64–74PubMedCrossRefGoogle Scholar
  130. Oh JH, Choi WS, Kim JE, Seo JW, O’Malley KL, Oh YJ (1998) Overexpression of HA-Bax but not Bc1–2 or Bcl-XL attenuates 6-hydroxydopamine-induced neuronal apoptosis. Exp Neurol 154: 1–2PubMedCrossRefGoogle Scholar
  131. Olanow CW, Hauser RA, Gauger L, Malapira T, Koller W, Hubble J, Bushenbark K, Lilienfeld D, Esterlitz J (1995) The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 38: 771–777PubMedCrossRefGoogle Scholar
  132. Park CW, Lee HS, Kim YS (1998) Mechanism of MPP(+)-induced cytotoxicity in human neuroblastoma SH-SY5Y. J Toxicol Sci 23 Suppl 2: 184–188Google Scholar
  133. Paterson IA, Davis BA, Durden DA, Juorio AV, Yu PH, Ivy G, Milgram W, Mendonca A, Wu P, Boulton AA (1995) Inhibition of MAO-B by (¡ª)-deprenyl alters dopamine metabolism in the macaque (Macaca facicularis) brain. Neurochem Res 20: 1503–1510Google Scholar
  134. Paterson IA, Barber AJ, Gelowitz DL, Voll C (1997) (¡ª)Deprenyl reduces delayed neuronal death of hippocampal pyramidal cells. Neurosci Biobehav Rev 21: 181–186PubMedCrossRefGoogle Scholar
  135. Paterson IA, Zhang D, Warrington RC, Boulton AA (1998) R-deprenyl and R-2-heptylN-methylpropargylamine prevent apoptosis in cerebellar granule neurons induced by cytosine arabinoside but not low extracellular potassium. J Neurochem 70: 515–523PubMedCrossRefGoogle Scholar
  136. Pereira CM, Oliveira CR (1997) Glutamate toxicity on a PC12 cell line involves glutathione (GSH) depletion and oxidative stress. Free Radic Biol Med 23: 637–647Google Scholar
  137. Ragaiey T, Ma JX, Jiang WJ, Greene W, Seigel GM, Stewart WC (1997) L-deprenyl protects injured retinal precursor cells in vitro. J Ocul Pharmacol Ther 13: 479–488PubMedCrossRefGoogle Scholar
  138. Ramsay RR, Salach JI, Singer TP (1986) Uptake of the neurotoxin 1-methyl-4phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem Biophys Res Commun 134: 743–748PubMedCrossRefGoogle Scholar
  139. Ravikumar R, Lakshmana MK, Rao BS, Meti BL, Bindu PN, Raju TR (1998) (¡ª)Deprenyl attenuates spinal motor neuron degeneration and associated locomotor deficits in rats subjected to spinal cord ischemia. Exp Neurol 149: 123–129PubMedCrossRefGoogle Scholar
  140. Riederer P, Konradi C, Schay V, Kienzl E, Birkmayer G, Danielczyk W, Sofic E, Youdim MB (1987) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv Neurol 45: 111–118PubMedGoogle Scholar
  141. Ronai Z (1993) Glycolytic enzymes as DNA binding proteins. Int J Biochem 25: 1073–1076Google Scholar
  142. Rossiter JP, Riopelle RJ, Bisby MA (1996) Axotomy-induced apoptotic cell death of neonatal rat facial motoneurons: time course analysis and relation to NADPHdiaphorase activity. Exp Neurol 138: 33–44PubMedCrossRefGoogle Scholar
  143. Salo PT, Tatton WG (1992) Deprenyl reduces the death of motoneurons caused by axotomy. J Neurosci Res 31: 394–400PubMedCrossRefGoogle Scholar
  144. Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol 91: 466–474PubMedCrossRefGoogle Scholar
  145. Saporito MS, Brown EM, Miller MS, Carswell S (1999) CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo. J Pharmacol Exp Ther 288: 421–427PubMedGoogle Scholar
  146. Saunders PA, Chalecka-Franaszek E, Chuang DM (1997) Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J Neurochem 69: 1820–1828PubMedCrossRefGoogle Scholar
  147. Saunders PA, Chen RW, Chuang DM (1999) Nuclear translocation of glyceraldehyde-3phosphate dehydrogenase isoforms during neuronal apoptosis. J Neurochem 72: 925932Google Scholar
  148. Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94: 11669–11674PubMedCrossRefGoogle Scholar
  149. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990a) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823827CrossRefGoogle Scholar
  150. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990b) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145PubMedCrossRefGoogle Scholar
  151. Schmidt DE, Ebert MH, Lynn JC, Whetsell WO, Jr (1997) Attenuation of 1-methyl4-phenylpyridinium (MPP+) neurotoxicity by deprenyl in organotypic canine substantia nigra cultures. J Neural Transm 104: 875–885PubMedCrossRefGoogle Scholar
  152. Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic [see comments]. Ann Neurol 32: 795–798PubMedCrossRefGoogle Scholar
  153. Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315: 19–30PubMedCrossRefGoogle Scholar
  154. Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527: 7–20PubMedCrossRefGoogle Scholar
  155. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD (1998) The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 18: 5533–5545PubMedGoogle Scholar
  156. Shashidharan P, Chalmers-Redman RM, Carlile GW, Rodic V, Gurvich N, Yuen T, Tatton WG, Sealfon SC (1999) Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. Neuroreport 10: 1149–1153PubMedCrossRefGoogle Scholar
  157. Sheehan JP, Palmer PE, Helm GA, Tuttle JB (1997) MPP+ induced apoptotic cell death in SH-SY5Y neuroblastoma cells: an electron microscope study. J Neurosci Res 48: 226–237PubMedCrossRefGoogle Scholar
  158. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 44: S160–166PubMedGoogle Scholar
  159. Sioud M, Jespersen L (1996) Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 257: 775–789PubMedCrossRefGoogle Scholar
  160. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432: 159–184PubMedCrossRefGoogle Scholar
  161. Spooren WP, Gentsch C, Wiessner C (1998) TUNEL-positive cells in the substantia nigra of C57BL/6 mice after a single bolus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 85: 649–51; discussion: 653PubMedCrossRefGoogle Scholar
  162. Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57: 456–464PubMedCrossRefGoogle Scholar
  163. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155: 1459–1466PubMedCrossRefGoogle Scholar
  164. Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5: 2529–2533PubMedCrossRefGoogle Scholar
  165. Su JH, Deng G, Cotman CW (1997) Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bc1–2 expression, and brain pathology. J Neuropathol Exp Neurol 56: 1–2PubMedCrossRefGoogle Scholar
  166. Sugrue MM, Shin DY, Lee SW, Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci U S A 94: 9648–9653PubMedCrossRefGoogle Scholar
  167. Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG (1999) Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 261: 123–130PubMedCrossRefGoogle Scholar
  168. Sunaga K, Takahashi H, Chuang DM, Ishitani R (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer’s brain. Neurosci Lett 200: 133–136PubMedCrossRefGoogle Scholar
  169. Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366: 151–165PubMedCrossRefGoogle Scholar
  170. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G (1999a) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189: 381–394PubMedCrossRefGoogle Scholar
  171. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999b) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446PubMedCrossRefGoogle Scholar
  172. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr (1996) Origin and functional consequences of the complexGoogle Scholar
  173. Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45: 25–32PubMedCrossRefGoogle Scholar
  174. Tagami M, Yamagata K, Ikeda K, Nara Y, Fujino H, Kubota A, Numano F, Yamori Y (1998) Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab Invest 78: 1415–1429PubMedGoogle Scholar
  175. Tajima H, Tsuchiya K, Yamada M, Kondo, Katsube N, Ishitani R (1998) Over-expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs. Neuroreport 10: 2029–2033CrossRefGoogle Scholar
  176. Takada M, Sugimoto T, Hattori T (1993) MPTP neurotoxicity to cerebellar Purkinje cells in mice. Neurosci Lett 150: 49–52PubMedCrossRefGoogle Scholar
  177. Tamatani M, Ogawa S, Tohyama M (1998) Roles of Bcl-2 and caspases in hypoxiainduced neuronal cell death: a possible neuroprotective mechanism of peptide growth factors. Brain Res Mol Brain Res 58: 27–39PubMedCrossRefGoogle Scholar
  178. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH accumulation and neuronal apoptosis in Parkinson’s disease. Exper Neurol in pressGoogle Scholar
  179. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77: 1037–1048PubMedCrossRefGoogle Scholar
  180. Tatton NA, Rideout HJ (1999) Confocal microscopy as a tool to examine DNA fragmentation, Chromatin condensation and other apoptotic changes in Parkinson’s disease. Park Rel Disord 5: 179–186CrossRefGoogle Scholar
  181. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44: S142–148PubMedGoogle Scholar
  182. Tatton WG, Chalmers-Redman RM (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47: S171–183PubMedCrossRefGoogle Scholar
  183. Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672PubMedCrossRefGoogle Scholar
  184. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410: 195–213PubMedCrossRefGoogle Scholar
  185. Tatton WG, Ju WY, Holland DP, Tai C, Kwan M (1994) (-)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575PubMedCrossRefGoogle Scholar
  186. Tatton WG, Chalmers-Redman RM, Ju WY, Wadia J, Tatton NA (1997) Apoptosis in neurodegenerative disorders: potential for therapy by modifying gene transcription. J Neural Transm Suppl 49: 245–268PubMedGoogle Scholar
  187. Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245: 519–522PubMedCrossRefGoogle Scholar
  188. Todd KG, Butterworth RF (1998) Increased neuronal cell survival after L-deprenyl treatment in experimental thiamine deficiency. J Neurosci Res 52: 240–246PubMedCrossRefGoogle Scholar
  189. Vizuete ML, Steffen V, Ayala A, Cano J, Machado A (1993) Protective effect of deprenyl against 1-methyl-4-phenylpyridinium neurotoxicity in rat striatum. Neurosci Lett 152: 113–116PubMedCrossRefGoogle Scholar
  190. Wadia JS, Chalmers-Redman RME, Ju WJH, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J Neurosci 18: 932–947PubMedGoogle Scholar
  191. Walkinshaw G, Waters CM (1994) Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience 63: 975–987PubMedCrossRefGoogle Scholar
  192. Walton M, Sirimanne E, Reutelingsperger C, Williams C, Gluckman P, Dragunow M (1997) Annexin V labels apoptotic neurons following hypoxia-ischemia. Neuroreport 8: 3871–3875PubMedCrossRefGoogle Scholar
  193. Ward CD (1994) Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry 57: 217–220PubMedCrossRefGoogle Scholar
  194. Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase a and b populations in primate brain. Science (Wash D C) 230: 181–183CrossRefGoogle Scholar
  195. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25: 439–456PubMedCrossRefGoogle Scholar
  196. Westlund KN, Krakower TJ, Kwan SW, Abell CW (1993) Intracellular distribution of monoamine oxidase A in selected regions of rat and monkey brain and spinal cord. Brain Res 612: 221–230PubMedCrossRefGoogle Scholar
  197. Wu RM, Murphy DL, Chiueh CC (1995) Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm [Gen Sect] 100: 5361CrossRefGoogle Scholar
  198. Wu Y, Blum D, Nissou MF, Benabid AL, Verna JM (1996) Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition. Neurosci Lett 221: 69–71PubMedCrossRefGoogle Scholar
  199. Wullner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P, Klockgether T (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease ¡ª a cautionary note. Acta Neuropathol (Berl) 97: 408–412CrossRefGoogle Scholar
  200. Xu L, Ma J, Seigel GM, Ma JX (1999) 1-Deprenyl, blocking apoptosis and regulating gene expression in cultured retinal neurons. Biochem Pharmacol 58: 1183–1190PubMedCrossRefGoogle Scholar
  201. Yahr MD, Mendoza MR, Moros D, Bergmann KJ (1983) Treatment of Parkinson’s disease in early and late phases. Use of pharmacological agents with special reference to deprenyl (selegiline). Acta Neurol Scand Suppl 95: 95–102PubMedCrossRefGoogle Scholar
  202. Yang JC, Cortopassi GA (1998) Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med 24: 624631CrossRefGoogle Scholar
  203. Yang L, Matthews RT, Schulz JB, Klockgether T, Liao AW, Martinou JC, Penney JB Jr, Hyman BT, Beal MF (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bc1–2. J Neurosci 18: 1–2PubMedGoogle Scholar
  204. Yu PH, Davis BA, Fang J, Boulton AA (1994) Neuroprotective effects of some monoamine oxidase-B inhibitors against DSP-4-induced noradrenaline depletion in the mouse hippocampus. J Neurochem 63: 1820–1828PubMedCrossRefGoogle Scholar
  205. Zeng YC, Bongrani S, Bronzetti E, Cadel S, Ricci A, Valsecchi B, Amenta F (1995) Effect of long-term treatment with L-deprenyl on the age-dependent microanatomical changes in the rat hippocampus. Mech Ageing Dev 79: 169–185PubMedCrossRefGoogle Scholar
  206. Zhang J, Snyder SH (1995) Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol 35: 213–233PubMedCrossRefGoogle Scholar
  207. Zhang X, Yu PH (1995) Depletion of NOS activity in the rat dentate gyrus neurons by DSP-4 and protection by deprenyl. Brain Res Bull 38: 307–311PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • W. G. Tatton
    • 1
  • R.M.E. Chalmers-Redman
    • 1
  • M. Elstner
    • 1
  • W. Leesch
    • 1
  • F. B. Jagodzinski
    • 1
  • D. P. Stupak
    • 1
  • M.M. Sugrue
    • 2
  • N. A. Tatton
    • 1
  1. 1.Department of NeurologyMount Sinai School of MedicineUSA
  2. 2.Department of PediatricsMount Sinai School of MedicineUSA

Personalised recommendations