The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity

  • A. Barzilai
  • R. Zilkha-Falb
  • D. Daily
  • N. Stern
  • D. Offen
  • I. Ziv
  • E. Melamed
  • A. Shirvan
Conference paper


Parkinson’s disease (PD) is a progressive neurological disorder caused by rather selective degeneration of the dopaminergic (DA) neurons in the substantia nigra. Though subject to intensive research, the etiology of this nigral neuronal loss is still enigmatic and treatment is basically symptomatic. The current major hypothesis suggests that nigral neuronal death in PD is due to excessive oxidative stress generated by auto-and enzymatic oxidation of the endogenous neurotransmitter dopamine (DA), the formation of neuromelanin and presence of high concentrations of iron.


Northern Blot Analysis Multiple System Atrophy Differential Display Sympathetic Neuron Cerebellar Granule Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn BY, Moss B (1992) Glutaredoxin homologue encoded by vaccinia virus is a virion-ociated enzyme with thioltransferase and dehydroascorbate reductase activity. Proc Natl Acad Sci USA 89: 7060–7064PubMedCrossRefGoogle Scholar
  2. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Parignet A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31PubMedGoogle Scholar
  3. Ben-Shachar D, Zuk R, Glinka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64: 718–723PubMedCrossRefGoogle Scholar
  4. Blin O, Desnuelle C, Rascol O, et al (1994) Mitochondrial respiratory failure in skeletal muscle from patient with Parkinson’s disease and multiple system atrophy. J Neurol Sci 125: 95–101PubMedCrossRefGoogle Scholar
  5. Bloom FE, Algeria S, Proppetti A, Revuelta A, Costa E (1969) Lesions of central orepinephrine terminals with 6-hydroxydopamine: biochemistry and fine structure. Science 166: 1284–1286PubMedCrossRefGoogle Scholar
  6. Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62: 2484–2847PubMedCrossRefGoogle Scholar
  7. Chiueh CC, Miyake H, Peng MT (1993) Role of dopamine autoxidation, hydroxyl radical generation and calcium overload in underlying mechanisms involved in MPTPinduced parkinsonism. Adv Neurol 60: 251–258PubMedGoogle Scholar
  8. Cohen G (1985) Oxidative stress in the nervous system. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 383–401Google Scholar
  9. Cohen G, Farooqui R, Kesler N (1997) Parkinson’s disease: A new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94: 4890–4894PubMedCrossRefGoogle Scholar
  10. Creagh EM, Cotter TG (1999) Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 97: 36–44PubMedCrossRefGoogle Scholar
  11. Daily D, Barzilai A, Offen D, Kemsler A, Melamed E, Ziv I (1999) The involvement of p53 in dopamine induced apoptosis of cerebellar granule neurons and leukemic cells overexpressing p53. Mol Cell Neurobiol 19: 261–276CrossRefGoogle Scholar
  12. Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease. Evidence supporting it. Ann Neurol 32: 804–812PubMedCrossRefGoogle Scholar
  13. Feiner L, Koppel AM, Kobayashi H, Raper JA (1997) Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron 19: 539–545PubMedCrossRefGoogle Scholar
  14. Fillox F, Townsend JJ (1993) Pre-and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol 119: 79–88CrossRefGoogle Scholar
  15. Fonstedt B (1990) Role of catechol autoxidation in the degeneration of dopamine neurons. Acta Neurol Scand 129: 12–14Google Scholar
  16. Freyaldenhoven TE, Ali SF (1996) Heat shock proteins protect cultured fibroblasts from the cytotxic effects of MPP+. Brain Res 735: 42–49PubMedCrossRefGoogle Scholar
  17. Gabbay M, Tauber M, Porat S, et al (1996) Selective role of glutathione in protecting human neuronal cells from dopamine-induced apoptosis. Neuropharmacology 35: 571–578CrossRefGoogle Scholar
  18. Gagliardini V, Frankhauser C (1999) Semaphorin III can induce death in sensory neurons. Mol Cell Neurosci 14: 301–316PubMedCrossRefGoogle Scholar
  19. Galea-Lauri A, Richardson AJ, Latchman DS, Katz DR (1996) Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-a and cycloheximide. J Immunol 157: 4109–4118PubMedGoogle Scholar
  20. Gan ZR, Wells WW (1987) The primary structure of pig liver thioltrasferase. J Biol Chem 262: 6699–6703PubMedGoogle Scholar
  21. Gan ZR, Polokoff MA, Jacobs JW, Sordana MK (1990) Complete amino acid sequence of yeast thiol transferase (glutaredoxin). Biochem Biophys Res Commun 168: 944–951PubMedCrossRefGoogle Scholar
  22. Gao Y, Thomas JO, Chow RL, Lee G-H, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes (3-actin foleling. Cell 69: 1043–1050PubMedCrossRefGoogle Scholar
  23. Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: Synergism between reactive oxygen species, calcium and excitoxic amino acids. Adv Neurol 69: 177–197PubMedGoogle Scholar
  24. Gerlach M, Xiao A, Heim C, Lan J, God R, Feineis D, Bringham G, Riederer P, Sontag KH (1998) 1-Trechloromethyl-1,2,3,4-tetrahydro-b-carboline (TaClo) increases extracellualr serotonin and stimulates hydroxyl radical production. Neurosci Lett: 257: 17–20PubMedCrossRefGoogle Scholar
  25. Goodman CS (1994) The likeness of being: Phylogenetically conserved molecular mechanisms of growth cone guidance. Cell 78: 353–356PubMedCrossRefGoogle Scholar
  26. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellualr protein related to UNC-33. Nature 376: 509–514PubMedCrossRefGoogle Scholar
  27. Hastings TG, Zigmond MJ (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H1 dopamine: impact of ascorbic acid and glutathione. J Neurochem 63: 1126–1132PubMedCrossRefGoogle Scholar
  28. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90: 739–751PubMedCrossRefGoogle Scholar
  29. Hirsch E, Hu LJ, Prignet A, Constatin B, Agid Y, Drabkin H, Roche J (1999) Distribution of semaphorin IV in adult human brain. Brain Res 823: 67–79PubMedCrossRefGoogle Scholar
  30. Hoog JO, Jornvall H, Holmgren A, Carlquist M, Persson M (1983) The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol. Eur J Biochem 136: 223–232PubMedCrossRefGoogle Scholar
  31. Hopper S, Johnson RS, Biemann K (1989) Glutaredoxin from rabbit bone marrow. Purification, characterization and amino acid sequence determined by tandem mass spectrometry. J Biol Chem 264: 20438–20447PubMedGoogle Scholar
  32. Janetzky B, Hauck S, Youdim MBH, et al (1994) Ulterated aconitase activity but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 169: 126–128PubMedCrossRefGoogle Scholar
  33. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82: 2173–2177PubMedCrossRefGoogle Scholar
  34. Jenner P (1991) Oxidative stress as a cause of Parkinson’s disease. Acta Neurol Scand 136 Suppl: 6–15Google Scholar
  35. Klintrot IM, Hoog JO, Jornvall H, Holmgren A, Luhtman M (1984) The primary structure of calf thymus glutaredoxin. Homology with the corresponding Escherichia coli protein but elongation at ends and with an additional half-cysteine/cysteine pair. Eur J Biochem 14: 417–413CrossRefGoogle Scholar
  36. Kolodkin AL (1996) Growth cones and the cues that repel them. Trends Neurosci 19: 507–513PubMedCrossRefGoogle Scholar
  37. Kolodkin AL, Levengood DV, Rowe EG, Tai Y, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90: 753–762PubMedCrossRefGoogle Scholar
  38. Koppel AM, Feiner L, Kobayashi H, Raper JA (1997) A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19: 531–537PubMedCrossRefGoogle Scholar
  39. Luo Y, Shepherd I, Li J, Renzi MJ, Chang S, Raper JA (1995) A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14: 1131–1140PubMedCrossRefGoogle Scholar
  40. Massenaro JM, Gong L, Kuage H, Baker I, Wyatt RJ (1996) Dopamine induces apoptotic cell death of cathecolaninergic cell line derived from the central nervous system. Mol Pharmacol 50: 1309–1315Google Scholar
  41. McLaughlin BA, Nelson D, Erecinska M, Chesselet MF (1998) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem 70: 2406–2415PubMedCrossRefGoogle Scholar
  42. Michel PP, Hefti F (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in cell culture. J Neurosci Res 26: 428–435PubMedCrossRefGoogle Scholar
  43. Minakuchi K, Yabushita T, Masumura T, Ichihara K, Tanaka K (1994) Cloning and sequence analysis of a cDNA encoding rice glutaredoxin. FEBS Lett 337: 157–160 Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm Suppl 50: 157–160Google Scholar
  44. Mytilineou C, Han SK, Cohen G (1993) Toxic and protective effects of L-DOPA on mesencephalic cell cultures. J Neurochem 61: 1470–1478PubMedCrossRefGoogle Scholar
  45. O’Dell SJ, Weihhmuller FB, Marshall JF (1993) Methamphetamine-induced dopamine terminals alteration by dopamine D1 and D2 antagonists. J Neurochem 60: 1792–1799PubMedCrossRefGoogle Scholar
  46. Offen D (1999) Personal communicationGoogle Scholar
  47. Offen D, Ziv I, Gorodin S, Malik Z, Barzilai A, Melamed E (1995) Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta 1268: 171–177PubMedCrossRefGoogle Scholar
  48. Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, Barzilai A (1996) Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bc1–2. Cell Mol Neurobiol 17: 1–2CrossRefGoogle Scholar
  49. Padilla CA, Martinez-Galisteo E, Barcenea JA, Spyrou G, Holmgren A (1995) Purification from placenta, amino acid sequence, structure comparison and cDNA cloninig of human glutaredoxin. Eur J Biochem 227: 27–34PubMedCrossRefGoogle Scholar
  50. Parker WD, Boyson SJ, Parks JK (1989) Abnormalities in electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26: 719–723PubMedCrossRefGoogle Scholar
  51. Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreira M, Naini AB, Fahn S (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 34: 715–723PubMedCrossRefGoogle Scholar
  52. Punyiczki M, Fesus L (1998) Heat shock and apoptosis; The two defense systems of the organism may have overlapping molecular elements. Ann N Y Acad Sci 851: 67–74PubMedCrossRefGoogle Scholar
  53. Putcha GV, Deshmukh M, Johnson Jr EM (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19: 7476–7485PubMedGoogle Scholar
  54. Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP (1991) Interaction of 1-methyl-4-phenylpyridium ion (MPP+) and its analogs with rotenone/ piericidin binding site of NADH dehydrogenase. J Neurochem 56: 1184–1190PubMedCrossRefGoogle Scholar
  55. Riederer PE, Sofic W, Rausch D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals ferritin, gltathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  56. Rosenberg PA (1988) Catecholamine toxicity in cerebral cortex of dissociated cell cultur. J Neurosci 8: 2887–2894PubMedGoogle Scholar
  57. Ruberg M, France-Leonard V, Brugg B, Lambeng N, Michel PP, Anglade P, Hunot ST, Damier P, Faucheux B, Hirsch E, Agid Y (1997) Neuronal death caused by apoptosis in Parkinson disease. Rev Neurol 153(8–9): 8–9PubMedGoogle Scholar
  58. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J 18: 2040–2048PubMedCrossRefGoogle Scholar
  59. Schapira AHV, Cooper JM, Dexter D (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827PubMedCrossRefGoogle Scholar
  60. Shirvan A, Ziv I, Machlin T, Zilkha-Falb R, Melamed E, Barzilai A (1997) Two waves of cyclin B and proliferating nuclear antigen expression during dopamine-triggered neuronal apoptosis. J Neurochem 69: 539–549PubMedCrossRefGoogle Scholar
  61. Shirvan A, Ziv I, Fleminger G, Shina R, He Z, Brudo I, Melamed E, Barzilai A (1999) Semaphorins as mediators of apoptosis. J Neurochem 73: 961–971PubMedCrossRefGoogle Scholar
  62. Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S (1996) Dopamine induced apoptosis in human neural cells: inhibition by nucleic acid antisense to the dopamine transporter. Neurosci 74: 39–50CrossRefGoogle Scholar
  63. Sirinathsinghji DJ, Heavens RP, McBribde CS (1988) Dopamine-releasing action of 1methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) in the neostriatum of the rat. Brain Res 443: 101–116PubMedCrossRefGoogle Scholar
  64. Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The tomplex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA 90: 9422–9426PubMedCrossRefGoogle Scholar
  65. Tanaka M, Sotomatsu A, Kanai H, Hirai S (1991) DOPA and dopamine cause cultured neuronal death in the presence of iron. J Neurochem 101: 198–203Google Scholar
  66. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in parkinson’s disease. Ann Neurol 44(3) Suppl 1: S142–148Google Scholar
  67. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274: 1123–1131PubMedCrossRefGoogle Scholar
  68. Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the neurvous system. J Neurosci 16: 6197–6207PubMedGoogle Scholar
  69. Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of procaspase-3 by upstream activator proteases during apoptosis. EMBO J 18: 2049–2056PubMedCrossRefGoogle Scholar
  70. Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H (1992) TCP-1 complex is a molecular chaperone in tubulin biogenesis. Nature 358: 245–248PubMedCrossRefGoogle Scholar
  71. Youdim MBH, Ben-Shachar D, Riederer P (1993a) The possible role of iron in the ethiology of Parkinson’s disease. Mov Disord 8: 1–14CrossRefGoogle Scholar
  72. Youdim MBH, Ben-Shachar D, Riederer P (1993b) Iron melanin interaction and Parkinson’s disease. Trends Pharmacol Sci 8: 45–49Google Scholar
  73. Zilkha-Falb R, Ziv I, Offen D, Melamed E, Barzilai A (1997) Monoamines-induced apoptotic neuronal cell death. Cell Mol Neurobiol 17: 101–118PubMedCrossRefGoogle Scholar
  74. Zilkha-Falb R, Barzilai A, Djaldeti R, Ziv I, Machlin T, Melamed E, Shirvan A (2000) Involvement of T-complex Protein-1 (TCP-1) in dopamine triggered neuronal apoptosis in chick embryo sympathetic neurons. SubmittedGoogle Scholar
  75. Ziv I, Melamed E, Nardi N, et al (1994) Dopamine induced apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci Lett 170: 136–140PubMedCrossRefGoogle Scholar
  76. Ziv I, Offen D, Haviv R, Stein R, Achiron A, Panet H, Barzilai A, Melamed E (1997) The protooncogene bc1–2 inhibits cellular toxicity of dopamine: Possible implication for Parkinson’s disease. Apoptosis 2: 1–2PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • A. Barzilai
    • 1
  • R. Zilkha-Falb
    • 1
  • D. Daily
    • 1
  • N. Stern
    • 1
  • D. Offen
    • 2
  • I. Ziv
    • 2
  • E. Melamed
    • 2
  • A. Shirvan
    • 2
  1. 1.Department of Neurobiochemistry, George SWise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
  2. 2.Department of Neurology and Felsenstein Medical Research CenterRabin Medical Center, Beilinson CampusPetach TikvaIsrael

Personalised recommendations