Advertisement

Lessons from studies of antigen-specific T cell responses in Multiple Sclerosis

  • R. Martin
  • B. Bielekova
  • B. Gran
  • H. F. McFarland
Conference paper

Summary

Multiple Sclerosis (MS) is considered a T cell-mediated autoimmune disease of central nervous system myelin. Based on elegant experiments in an animal model of MS, experimental allergic encephalomyelitis (EAE), a number of myelin proteins and peptides derived from these can induce inflammatory demyelinating lesions. Recent studies with transgenic mice expressing human HLA-DR molecules and a myelin basic protein (MBP)specific T cell receptor as well as data from a phase II clinical trial with an altered peptide ligand based on MBP peptide (83-99) provide convincing evidence that the pathogenetic concepts which largely stem from the above EAE studies are valid in MS, too.

Keywords

Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Multiple Sclerosis Patient Myelin Basic Protein Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelmann M, Wood J, et al (1995) The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol 63: 17-27PubMedCrossRefGoogle Scholar
  2. Amor S, Baker D, et al (1993) Identification of a major encephalitogenic epitope of proteolipid protein (residues 56-70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. J Immunol 150: 5666-5672PubMedGoogle Scholar
  3. Amor S, Groome N, et al (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153: 4349-4356PubMedGoogle Scholar
  4. Ando DG, Clayton J, et al (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124: 132-143PubMedCrossRefGoogle Scholar
  5. Baker D, Rosenwasser OA, et al (1995) Genetic analysis of experimental allergic encephalomyelitis in mice. J Immunol 155: 4046-4051PubMedGoogle Scholar
  6. Banki K, Colombo E, et al (1994) Oligodendrocyte-specific expression and autoantigenicity of transaldolase in Multiple Sclerosis. J Exp Med 180: 1649-1663PubMedCrossRefGoogle Scholar
  7. Bebo BF, Yong T, et al (1996) Hypothesis: a possible role for mast cells and their inflammatory mediators in the pathogenesis of autoimmune encephalomyelitis. J Neurosci Res 45: 340-348PubMedCrossRefGoogle Scholar
  8. Becker KG, Simon RM, et al (1998) Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 95: 9979-9984PubMedCrossRefGoogle Scholar
  9. Brocke S, Gijbels K, et al (1996) Dynamics of autoimmune T cell infiltration: reversal of paralysis and disappearance of inflammation following treatment of experimental encephalomyelitis with a myelin basic protein peptide analog. Nature 379: 343-346PubMedCrossRefGoogle Scholar
  10. Broome Powell M, Mitchell D, et al (1990) Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 2: 539-544CrossRefGoogle Scholar
  11. Butterfield RJ, Sudweeks JD, et al (1998) New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 161: 1860-1867PubMedGoogle Scholar
  12. Compston A (1999) The genetic epidemiology of Multiple Sclerosis. Philos Trans R Soc London B Biol Sci 354(1390): 1623-1634PubMedCrossRefGoogle Scholar
  13. Constant SL, Bottomly K (1997) Induction of Thl and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15: 297-322PubMedCrossRefGoogle Scholar
  14. Coulson-Burghes S, Gonzalez LM, et al (2000) Inflammatory infiltrates in experimental axonal ion channel encephalitis (EAICE). Neurology 54, P02.89: Al25Google Scholar
  15. De Magistris MT, Alexander J, et al (1992) Antigen analog-major histocompatibility Complexes Act As Antagonists of the T Cell Receptor. Cell 68: 625-634PubMedCrossRefGoogle Scholar
  16. Ebers GC, Kukay K, et al (1996) A full genome search in Multiple Sclerosis. Nat Genet 13: 472-476PubMedCrossRefGoogle Scholar
  17. Elliott EA, McFarland HI, et al (1996) Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J Clin Invest 98: 1602-1612PubMedCrossRefGoogle Scholar
  18. Encinas JA, Wicker LS, et al (1999) QTL influencing autoimmune diabetes and encepha-lomyelitis map to a 0.15-cM region containing IL2. Nat Genet 21: 158-160PubMedCrossRefGoogle Scholar
  19. Evavold BD, Allen PM (1991) Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252: 1308-1310PubMedCrossRefGoogle Scholar
  20. Eylar EH, Jackson JJ, et al (1979) Suppression and reversal of allergic encephalomyelitis in rhesus monkeys with basic protein and peptides. Neurochem Res 4: 249-258PubMedCrossRefGoogle Scholar
  21. Fritz RB, McFarlin DE (1989) Encephalitogenic epitopes of myelin basic protein. In: Sercarz EE (ed) Antigenic determinants and immune response. Chem Immunol 46: 101-125CrossRefGoogle Scholar
  22. Gaur A, Boehme SA, et al (1997) Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J Neuroimmunol 74: 149-158PubMedCrossRefGoogle Scholar
  23. Genain CP, Nguyen MH, et al (1995) Antibody facilitation of Multiple Sclerosis-like lesions ina nonhuman primate. J Clin Invest 96: 2966-2974PubMedCrossRefGoogle Scholar
  24. Genain CP, Cannella B, et al (1999) Identification of autoantibodies associated with myelin damage in Multiple Sclerosis. Nat Med 5: 170-175PubMedCrossRefGoogle Scholar
  25. Goebels N, Hofstetter H, et al (2000) Repertoire dynamics of autoreactive T cells in Multiple Sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123: 508-518PubMedCrossRefGoogle Scholar
  26. Goodkin DE, Shulman M, et al (2000) A phase I trial of solubilized DR2:MBP84-102 (AG284) in multiple sclerosis. Neurology 54: 1414-1420PubMedCrossRefGoogle Scholar
  27. Greer JM, Klinguer C, et al (1997) Encephalitogenicity of murine, but not bovine, DM20 in SJL mice is due to a single amino acid difference in the immunodominant encephalitogenic epitope. Neurochem Res 22: 541-547PubMedCrossRefGoogle Scholar
  28. Haines JL, Ter-Minassian M, et al (1996) A complete genomic screen for Multiple Sclerosis underscores a role for the major histocompatibility complex. The Multiple Sclerosis Genetics Group. Nat Genet 13: 469-471PubMedCrossRefGoogle Scholar
  29. Hemmer B, Vergelli M, et al (1997) Human T-cell response to myelin basic protein peptide (83-99): Extensive heterogeneity in antigen recognition, function, and phenotype. Neurology 49: 1116-1126PubMedCrossRefGoogle Scholar
  30. Hohlfeld R (1997) Biotechnological agents of the immunotherapy of Multiple Sclerosis. Principles, problems and perspectives. Brain 120: 865-916PubMedCrossRefGoogle Scholar
  31. Holz A, Bielekova B, et al (2000) Myelin-associated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with Multiple Sclerosis. J Immunol 164: 1103-1109PubMedGoogle Scholar
  32. Karin N, Mitchell DJ, et al (1994) Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon y and tumor necrosis factor a production. J Exp Med 180: 2227-2237PubMedCrossRefGoogle Scholar
  33. Karkhanis YD, Carlo DJ, et al (1975) Allergic encephalomyelitis: Isolation of an encephalitogenic peptide active in the monkey. J Biol Chem 250: 1718-1722PubMedGoogle Scholar
  34. Kaye JF, Kerlero de Rosbo N, et al (2000) The central nervous sytem-specific myelin oligodendrocytic basic protein (MOBP) is encephalitogenic and a potential target antigen in Multiple Sclerosis (MS). J Neuoimmunol 102: 189-198CrossRefGoogle Scholar
  35. Kerlero de Rosbo N, Milo R, et al (1993) Reactivity to myelin antigens in Multiple Sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 92: 2602-2608PubMedCrossRefGoogle Scholar
  36. Kerlero de Rosbo N, Mendel I, et al (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/ J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25: 985-993PubMedCrossRefGoogle Scholar
  37. Kojima K, Berger T, et al (1994) Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100ß molecule, a calcium binding protein of astroglia. J Exp Med 180: 817-829PubMedCrossRefGoogle Scholar
  38. Krogsgaard M, Wucherpfennig KW, et al (2000) Visualization of myelin basic protein (MBP) T cell epitopes in Multiple Sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 191: 1395-1412PubMedCrossRefGoogle Scholar
  39. Kuchroo VK, Greer JM, et al (1994) A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J Immunol 153: 3326-3336PubMedGoogle Scholar
  40. Kuokkanen S, Gschwend M, et al (1997) Genomewide scan of Multiple Sclerosis in Finnish multiplex families. Am J Hum Genet 61: 1379-1387PubMedCrossRefGoogle Scholar
  41. Lindert RB, Haase CG, et al (1999) Multiple Sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. Brain 122: 2089-2100PubMedCrossRefGoogle Scholar
  42. Linington C, Bradl M, et al (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130: 443-454PubMedGoogle Scholar
  43. Linington C, Berger T, et al (1993) T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23: 1364-1372PubMedCrossRefGoogle Scholar
  44. Litzenburger T, Fassler R, et al (1998) B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J Exp Med 188: 169-180PubMedCrossRefGoogle Scholar
  45. Maatta JA, Kaldman MS, et al (1998) Encephalitogenicity of myelin-associated oligodendrocyte basic protein and 2’,3’-cyclic nucleotide 3 ’-phosphodiesterase for Balb/c ans SJL mice. Immunology 95: 383-388PubMedCrossRefGoogle Scholar
  46. Madsen LS, Andersson EC, et al (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet 23: 343-347PubMedCrossRefGoogle Scholar
  47. Markovic-Plese S, Fukaura H, et al (1995) T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 155: 982-992PubMedGoogle Scholar
  48. Martin R, Howell MD, et al (1991) A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with Multiple Sclerosis. J Exp Med 173(1): 19-24PubMedCrossRefGoogle Scholar
  49. Martin R, Jaraquemada D, et al (1990) Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from Multiple Sclerosis patients and healthy individuals. J Immunol 145: 540-548PubMedGoogle Scholar
  50. Martin R, McFarland HF, et al (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153-187PubMedCrossRefGoogle Scholar
  51. Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32: 121-182CrossRefGoogle Scholar
  52. McFarlin DE, McFarland HF (1982a) Multiple Sclerosis (part 1). New Engl J Med 307: 1183-1188CrossRefGoogle Scholar
  53. McFarlin DE, McFarland HF (1982b) Multiple Sclerosis (part 2). New Engl J Med 307: 1246-1251CrossRefGoogle Scholar
  54. Meinl E, Weber F, et al (1993) Myelin basic protein-specific T lymphocyte repertoire in Multiple Sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92: 2633-2643PubMedCrossRefGoogle Scholar
  55. Muraro PA, Vergelli M, et al (1997) Immunodominance of a low-affinity MHC binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire. J Clin Invest 100: 339-349PubMedCrossRefGoogle Scholar
  56. Nicholson LB, Greer JM, et al (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3: 397-405PubMedCrossRefGoogle Scholar
  57. Nicholson LB, Mwtaza A, et al (1997) A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent experimental autoimmune encephalomyelitis induced by multiple myelin antigens. Proc Natl Acad Sci USA 94: 9279-9284PubMedCrossRefGoogle Scholar
  58. Offner H, Hashim GA, et al (1989) T cell determinants of myelin basic protein include a unique encephalitogenic I-E-restricted epitope for Lewis rats. J Exp Med 170: 355-367PubMedCrossRefGoogle Scholar
  59. Oksenberg JR, Panzara MA, et al (1993) Selection for T-cell receptor Vp-Dp-Jp gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362: 68-70PubMedCrossRefGoogle Scholar
  60. Olerup O, Hillert J, et al (1989) Primarily chronic progressive and relapsing/remitting multiple sclerosis: Two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 86: 7113-7117PubMedCrossRefGoogle Scholar
  61. Olsson T, Wei Zhi W, et al (1990) Autoreactive T lymphocytes in Multiple Sclerosis determined by antigen-induced secretion of interferon-y. J Clin Invest 86: 981-985PubMedCrossRefGoogle Scholar
  62. Ota K, Matsui M, et al (1990) T-cell recognition of an immunodominant myelin basic protein epitope in Multiple Sclerosis. Nature 346: 183-187PubMedCrossRefGoogle Scholar
  63. Pelfrey CM, Trotter JL, et al (1993) Identification of a novel T cell epitope of human proteolipid protein (residues 40-60) recognized by proliferative and cytolytic CD4+ T cells from Multiple Sclerosis. J Neuroimmunol 46: 33-42PubMedCrossRefGoogle Scholar
  64. Pelfrey CM, Trotter JL, et al (1994) Identification of a second T cell epitope of human proteolipid protein (residues 89-106) recognized by proliferative and cytolytic CD4+ T cells from multiple patients. J Neuroimmunol 53: 153-161PubMedCrossRefGoogle Scholar
  65. Pette M, Fujita K, et al (1990a) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40: 1770-1776CrossRefGoogle Scholar
  66. Pette M, Fujita K, et al (1990b) Myelin autoreactivity in Multiple Sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA 87: 7968-7972CrossRefGoogle Scholar
  67. Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vivo activation of lymph node cells by myelin basic protein: requirement for Lyt-1+2- T lymphocytes. J Immunol 127: 1420-1423PubMedGoogle Scholar
  68. Raine CS (1994) Multiple Sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 53: 328-337PubMedCrossRefGoogle Scholar
  69. Richert J, Robinson ED, et al (1989a) Evidence for multiple human T cell recognition sites on myelin basic protein. J Neuroimmunol 23: 55-66CrossRefGoogle Scholar
  70. Richert JR, Robinson ED, et al (1989b) Human cytotoxic T-cell recognition of a synthetic peptide of myelin basic protein. Ann Neurol 26: 342-346CrossRefGoogle Scholar
  71. Rösener M, Muraro PA, et al (1997) 2’,3’-cyclic nucleotide 3’-phosphodiesterase: a novel candidate autoantigen in demyelinating diseases. J Neuroimmunol (in press)Google Scholar
  72. Rouleau A, Dimitriadou V, et al (1997) Mast cell specific proteases in rat brain: changes in rats with experimental allergic encephalomyelitis. J Neural Transm 104: 399-417PubMedCrossRefGoogle Scholar
  73. Sakai K, Zamvil SS, et al (1989) Prevention of experimental encephalomyelitis with peptides that block interaction of T cells with major histocompatibility complex proteins. Proc Natl Acad Sci USA 86: 9470-9474PubMedCrossRefGoogle Scholar
  74. Salvetti M, Ristori G, et al (1993) Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immuol 23: 1232-1239CrossRefGoogle Scholar
  75. Sawcer S, JHB, et al (1996) A genome screen in Multiple Sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13: 464-468PubMedCrossRefGoogle Scholar
  76. Secor VH, Secor WE, et al (2000) Mast cells are essential for early onset and severe disease in a murine model of Multiple Sclerosis. J Exp Med 191: 813-822PubMedCrossRefGoogle Scholar
  77. Slavin A, Ewing C, et al (1998) Induction of Multiple Sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28: 109-120PubMedCrossRefGoogle Scholar
  78. Sloan-Lancaster J, Evavold BD, et al (1993) Induction of T-cell anergy by altered T cell receptor ligand on live antigen-presenting cells. Nature 363: 156-159PubMedCrossRefGoogle Scholar
  79. Steinman L (1996) Multiple Sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85: 299-302PubMedCrossRefGoogle Scholar
  80. Stevens DB, Chen K, et al (1999) Oligodendrocyte-specific protein peptides induce experimental autoimmune encephalomyelitis in SJL/J mice. J Immunol 162: 7501-7509PubMedGoogle Scholar
  81. Storch MK, Stefferl A, et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of Multiple Sclerosis pathology. Brain Pathol 8: 681-694PubMedCrossRefGoogle Scholar
  82. Sun J, Link H, et al (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in Multiple Sclerosis. J Immunol 146: 1490-1495PubMedGoogle Scholar
  83. Tan L, Gordon KB, et al (1998) Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160: 4271-4279PubMedGoogle Scholar
  84. Thoua NM, van Noort JM, et al (2000) Encephalitogenic and immunogenic potential of the stress protein alphaB-crystallin in Biozzi ABH (H-2A(g7)) mice. J Neuroimmunol 104: 47-57PubMedCrossRefGoogle Scholar
  85. Trotter JL, Hickey WF, et al (1991) Peripheral blood mononuclear cells from Multiple Sclerosis patients recognize myelin proteolipid protein and selected peptides. J Neuroimmunol 33: 55-62PubMedCrossRefGoogle Scholar
  86. Tuohy VK, Sobel RA, et al (1988) Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J Immunol 140: 1868-1873PubMedGoogle Scholar
  87. Tuohy VK, Lu Z, et al (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 142: 1523-1527PubMedGoogle Scholar
  88. Tuohy VK, Yu M, et al (1998) The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and Multiple Sclerosis. Immunol Rev 164: 93-100PubMedCrossRefGoogle Scholar
  89. Valli A, Sette A, et al (1993) Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from Multiple Sclerosis patients. J Clin Invest 91: 616-628PubMedCrossRefGoogle Scholar
  90. Van der Goes A, Kortekaas M, et al (1999) The role of anti-myelin (auto)-antibodies in the phagocytosis of myelin by macrophages. J Neuroimmunol 101: 61-67PubMedCrossRefGoogle Scholar
  91. van Noort JM, van Sechel AC, et al (1995) The small heat-shock protein aB-crystallin as candidate autoantigen in Multiple Sclerosis. Nature 375: 798-801PubMedCrossRefGoogle Scholar
  92. Vanderlugt CL, Neville KL, et al (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 164: 670-678PubMedGoogle Scholar
  93. Vartdal F, Sollid LM, et al (1989) Patients with Multiple Sclerosis carry DQB1 genes which encode shared polymorphic aminoacid sequences. Hum Immunol 25: 103-110PubMedCrossRefGoogle Scholar
  94. Vergelli M, Hemmer B, et al (1996) Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87-99). Eur J Immunol 26: 2624-2634PubMedCrossRefGoogle Scholar
  95. Vergelli M, Hemmer B, et al (1997) Modifications of peptide ligands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. J Immunol 158: 3746-3752PubMedGoogle Scholar
  96. Warren KG, Catz I, et al (1995) Fine specificity of the antibody response to myelin basic protein in the central nervous system in Multiple Sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci USA 92: 11061-11065PubMedCrossRefGoogle Scholar
  97. Wekerle H, Kojima K, et al (1994) Animal models. Ann Neurol 36: S47-53PubMedCrossRefGoogle Scholar
  98. Windhagen A, Scholz C, et al (1995) Modulation of cytokine patterns of human auto-reactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2: 373-380Google Scholar
  99. Wraith DC, Smilek DE, et al (1989) Antigen recognition in autoimmune encephalomy- elitis and the potential for peptide-mediated immunotherapy. Cell 59: 247-255PubMedCrossRefGoogle Scholar
  100. Wucherpfennig KW, Catz I, et al (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2 restricted T cell clones from Multiple Sclerosis patients: identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100: 1114-1122PubMedCrossRefGoogle Scholar
  101. Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8: 579-621PubMedCrossRefGoogle Scholar
  102. Zhang J, Markovic-Plese S, et al (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein in peripheral blood and cerebrospinal fluid of patients with Multiple Sclerosis. J Exp Med 179: 973-984PubMedCrossRefGoogle Scholar
  103. Zhao W, Wegmann KW, et al (1994) Identification of an N-terminally acetylated encephalitogenic epitope in myelin proteolipid apoprotein for the Lewis rat. J Immunol 153: 901-909PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • R. Martin
    • 1
  • B. Bielekova
    • 2
  • B. Gran
    • 2
  • H. F. McFarland
    • 2
  1. 1.Neuroimmunology BranchNINDS, National Institutes of HealthBethesdaUSA
  2. 2.Neuroimmunology BranchNINDS, National Institutes of HealthBethesdaUSA

Personalised recommendations