Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits

  • G. Teuchert-Noodt
Conference paper


Based on developmental principles and insights from animal research about neuroplasticity in cell assemblies, this article is to propose a view of plasticity that promotes a link between hippocampal and prefrontal structure and function. Both the mitotic activity (counting of BrdU-labeled cells) in hippocampal dentatus and the maturation of dopamine fibres (quantitative immunochemistry of mesoprefrontal projection) in the prefrontal cortex proved to be a measurable combination for investigating the complex chain of events that relate activity dependent neuroplasticity to normal as well as to pathological maturational processes. With our animal model we demonstrate that both rearing conditions and neuroactive substances can effectively interfere with developmental plasticity and induce a malfunctional adaptation of prefrontal structures and neurotransmitter systems (dopamine, GABA). In the hippocampal dentatus, where ontogenetic plasticity proved to be preserved by continued neuro-and synaptogenesis, serious damage can be internalized without simultaneous disruption of neural dynamics offering an approach to reverse dysfunctional reorganization in the prefrontal cortex.


Prefrontal Cortex Granule Cell Dentate Gyrus Meriones Unguiculatus Synaptic Remodel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301: 365-381PubMedCrossRefGoogle Scholar
  2. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124: 319-335PubMedCrossRefGoogle Scholar
  3. Anthes DL, Leboutillier JC, Petit TL (1993) Structure and plasticity of newly formed adult synapses: A morphometric study in the rat hippocampus. Brain Res 626: 50-62PubMedCrossRefGoogle Scholar
  4. Blanc G, Herve D, Simon H, Lisoprawski A, Glowinski J, Tassin JP (1980) Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature 284: 265-267PubMedCrossRefGoogle Scholar
  5. Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neurosci 61: 203-209CrossRefGoogle Scholar
  6. Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56: 337-344PubMedCrossRefGoogle Scholar
  7. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15: 4687-4692Google Scholar
  8. Cameron HA, Hazel TG, Mc Kay RDG (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36: 287-306PubMedCrossRefGoogle Scholar
  9. Changeux JP, Danchin A (1976) Selective stabilization of developing synapses as amechanism for the specification of neural networks. Nature 264: 705-712PubMedCrossRefGoogle Scholar
  10. Cotman CW, Lynch G (1976) Reactive synaptogenesis in the adult nervous system. In:Barondes SH (ed), Neuronal recognition. Plenum Press, New York, 69-108CrossRefGoogle Scholar
  11. Cotman CW, Nadler JV (1978) Reactive synaptogensis in the hippocampus. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, 227-271Google Scholar
  12. Cowan WM, Stanfield BB, Kishi K (1980) The development of the dentate gyrus. In: Hunt RK (ed), Current topics in developmental biology. Neural development 1, Emergence of specificity in neural histogenesis. Academic Press, New York, 103-157Google Scholar
  13. Cowan WM, Fawcett JW, O’Leary DDM, Stanfield BB (1984) Regressive events in neurogenesis. Science 225: 1258-1265PubMedCrossRefGoogle Scholar
  14. Cragg SJ, Holmes C, Hawkey CR, Greenfield SA (1998) Dopamine is released spontaneously from developing midbrain neurons in organotypic culture. Neurosci 84: 325-330CrossRefGoogle Scholar
  15. Crespi F, Wright IK, Möbius C (1992) Isolation rearing of rats alters release of 5hydroxytryptamine and dopamine in the frontal cortex: An in vivo electrochemical study. Exp Brain Res 88: 495-501PubMedCrossRefGoogle Scholar
  16. Dawirs RR, Teuchert-Noodt G, Busse M (1991) Single doses of methamphetamine cause changes in the density of dendritic spines in the prefrontal cortex of gerbils (Meriones unguiculatus). Neuropharmacol 30: 275-282CrossRefGoogle Scholar
  17. Dawirs RR, Teuchert-Noodt G, Kacza J (1992) Naturally occurring degrading events in axon terminals of the dentate gyrus and stratum lucidum in the spiny mouse (Acomys cahirinus) during maturation, adulthood and aging. Dev Neurosci 14: 210-220PubMedCrossRefGoogle Scholar
  18. Dawirs RR, Teuchert-Noodt G, Czaniera R (1993a) Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study. J Hirnforsch 34: 281-290Google Scholar
  19. Dawirs RR, Teuchert-Noodt G, Molthagen M (1993b) Indication of methamphetamineinduced reactive synaptogenesis in the prefrontal cortex of gerbils (Meriones unguiculatus). Eur J Pharmacol 241: 89-97CrossRefGoogle Scholar
  20. Dawirs RR, Teuchert-Noodt G, Czaniera R (1994) The postnatal maturation of dopamine innervation in the prefrontal cortex of gerbils (Meriones unguiculatus) is sensitive to an early single dose of methamphetamine. A quantitative immunocytochemical study. J Brain Res 35: 195-204Google Scholar
  21. Dawirs RR, Teuchert-Noodt G, Czaniera R (1996) Ontogeny of PFC-related behaviours is sensitive t a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus). J Neural Transm 103: 1235-1245PubMedCrossRefGoogle Scholar
  22. Dawirs RR, Teuchert-Noodt G, Nossoll M (1997) Pharmacologically induced neural plasticity in the prefrontal cortex of adult gerbils (Meriones unguiculatus). Eur J Pharmacol 327: 117-123PubMedCrossRefGoogle Scholar
  23. Dawirs RR, Hildebrandt K, Teuchert-Noodt G (1998) Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 105: 317-327PubMedCrossRefGoogle Scholar
  24. Dawirs RR, Teuchert-Noodt G, Hildebrandt K, Fei F (2000) Granule cell proliferation and axon terminal degradation in the dentate gyrus of gerbils (Meriones unguiculatus) during maturation, adulthood and aging. J Neural Transm, in pressGoogle Scholar
  25. De Bruin JPC (1990) Social behaviour and the prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds), Progress in brain research 85. Elsevier, Amsterdam, 485-497Google Scholar
  26. Duffy CJ, Rakic P (1983) Differentiation of granule cell dendrites in the dentate gyrus of the rhesus monkey: a quantitative golgi study. J Comp Neurol 214: 224-237PubMedCrossRefGoogle Scholar
  27. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in adult human hippocampus. Nat Med 4: 1313-1317PubMedCrossRefGoogle Scholar
  28. Farkas T, Kis Z, Toldi J and Wolff JR (1999) Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex. Neurosci 90: 353-361CrossRefGoogle Scholar
  29. Frotscher M, Heimrich B, Deller T, Nitsch R (1995) Understanding the cortex through the hippocampus: Lamina-specific connections of the rat hippocampal neurons. J Anat 187: 539-545PubMedGoogle Scholar
  30. Frotscher M, Deller T, Heimrich B, Foerster E, Haas C, Naumann T (1996) Survival, regeneration and sprouting of central neurons: The rat septohippocampal projection as a model. Ann Anat 178: 311-315PubMedCrossRefGoogle Scholar
  31. Fuster JM (1989) The prefrontal cortex, 2nd edn. Raven Press, New YorkGoogle Scholar
  32. Fuster JM (1991) The prefrontal cortex and its relation to behaviour. Prog Brain Res 87: 201-211PubMedCrossRefGoogle Scholar
  33. Gallyas F, Wolff JR, Böttcher H, Zaborszky L (1980) A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. Stain Technol 55: 299-306PubMedGoogle Scholar
  34. Gould E, Cameron HA (1996) Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci 18: 22-35PubMedCrossRefGoogle Scholar
  35. Gould E, Cameron HA, McEwen BS (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 340: 551-566PubMedCrossRefGoogle Scholar
  36. Hebb DO (1949) The organization of behaviour. Wiley, New York, pp 335Google Scholar
  37. Hilakivi LA, Ota M, Lister RG (1989) Effect of isolation on brain monoamines and the behaviour of mice in tests of exploration, locomotion, anxiety and behavioural de-spair. Pharmacol Biochem Behav 33: 371-374PubMedCrossRefGoogle Scholar
  38. Hildebrandt K (1999) Zur Moduslation neuroplastischer Prozesse im Hippocampus durch Umweltparameter und neuroaktive Substanzen: Quantitative Analysen zur Körnerzellproliferation im Gehirn der adulten Maus. Dissertation, Bielefeld, pp 171Google Scholar
  39. Hildebrandt K, Teuchert-Noodt G, Dawirs RR (1998) A single neonatal dose of methamphetamine suppresses dentate granule cell proliferation in adult gerbils which is restored to control values by acute doses of haloperidol. J Neural Transm 106: 549-558CrossRefGoogle Scholar
  40. Holzgraefe M, Teuchert G, Wolff JR (1981) Chronic isolation of visual cortex induces reorganization of cortico-cortical connections. In: Flohr H, Precht W (eds), Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, Tokyo 351-359Google Scholar
  41. Huttenlocher PR (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2): 167-178PubMedCrossRefGoogle Scholar
  42. Jacobson M (1991) Developmental neurobiology, 3rd edn. Plenum Press, New York, pp 776Google Scholar
  43. Jones DG (1988) Synaptic trends and synaptic remodeling in the developing and mature neocortex. In: Petit TL, Ivy GO (eds), Neural plasticity: a lifespan approach. Liss, New York, 21-42Google Scholar
  44. Jones GH, Hernandez TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: Study of behavioural response and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43: 17-35PubMedCrossRefGoogle Scholar
  45. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269: 58-72PubMedCrossRefGoogle Scholar
  46. Kalsbeek A, Matthijssen MA, Uylings HB (1989) Morphometric analysis of prefrontal cortical development following neonatal lesioning of the dopaminergic mesocortical projection. Exp Brain Res 78: 279-289PubMedCrossRefGoogle Scholar
  47. Kandel E, Schwartz JH, Jessel TM (1991) Principles of neural science. Prentice-Hall, Englewood CliffsGoogle Scholar
  48. Kaplan MS, Bell DH (1983) Neuronal proliferation in the 9-month-old rodent: radioau-tographic study of granule cells in the hippocampus. Exp Brain Res 52: 1-5PubMedCrossRefGoogle Scholar
  49. Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res Rev 8: 65-98CrossRefGoogle Scholar
  50. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA, 96(10): 5768-5773PubMedCrossRefGoogle Scholar
  51. Lauder JM (1988) Neurotransmitters as morphogens. In: Boer GJ, Feenstra MGP, Mirmiran M, Swaab DF, Van Haaren F (eds), Progress in brain research 73. Elsevier Science (Biom Div), Amsterdam, 365-387Google Scholar
  52. Linke R, Pabst T, Frotscher M (1995) Development of the hippocamposeptal projection in the rat. J Comp Neurol 351(4): 602PubMedCrossRefGoogle Scholar
  53. Lynch G, Mosko S, Parks T, Cotman CW (1973) Relocalization and hyperdevelopment of the dentate gyrus commissural system after entorhinal lesions in immature rats. Brain Res 50: 174-178PubMedCrossRefGoogle Scholar
  54. Lynch G, Stanfield B, Parks T, Cotman CW (1974) Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat. Brain Res 69: 1-11PubMedCrossRefGoogle Scholar
  55. Merzenich MM, Kaas JH (1982) Reorganization of mammalian somatosensory cortex following peripheral nerve injury. Trends Neurosci 5: 434-436CrossRefGoogle Scholar
  56. Miczek KA (1986) The psychopharmacology of aggression. In: Iversen LL, Iversen SD, Snyder SH (eds), Handbook of psychopharmacology, behavioural pharmacology. Plenum Press, New York, 183-327Google Scholar
  57. Mrzljak L, Uylings HBM, Van Eden CG, Judas M (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds), Progress in brain research 85. Elsevier, Amsterdam, 185-222Google Scholar
  58. Naumann T, Linke R, Frotscher M (1992) Fine structure of rat septohippocampal neurons: I. Indentivation of septohippocampal projection neurons by retrograde tracing. J Comp Neurol 325(2): 207PubMedCrossRefGoogle Scholar
  59. Nossoll M, Teuchert-Noodt G, Dawirs RR (1997) A single dose of methamphetamine in neonatal gerbils affects adult prefrontal GABA innervation. Eur J Pharmacol 340: 35CrossRefGoogle Scholar
  60. Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214: 1368-1370PubMedCrossRefGoogle Scholar
  61. Nottebohm F, Nottebohm ME, Crane L (1986) Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song control nuclei. Behav Neur Biol 46: 445-472CrossRefGoogle Scholar
  62. Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: Effects of training and experience on brain and behaviour. Behav Brain Res 78: 57-65PubMedCrossRefGoogle Scholar
  63. Schlesinger AR, Cowan WM, Gottlieb DJ (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of rat. J Comp Neurol 159: 149-176CrossRefGoogle Scholar
  64. Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13: 2351-2358PubMedGoogle Scholar
  65. Seki T, Arai Y (1995) Age-related production of new granule cells in the adult dentate gyrus. Neuro Rep 6(18): 2479-2482Google Scholar
  66. Sloviter RS, Loewenstein DH (1992) Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J Neurosci 12(8): 3005-3009Google Scholar
  67. Sloviter RS, Valiquette G, Abrams GM, Ronk E, Sollas A, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature rat after adrenalectomy. Science 243: 535-538PubMedCrossRefGoogle Scholar
  68. Sokolowski JD, Salamone JD (1994) Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res 642: 2028CrossRefGoogle Scholar
  69. Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72: 399-406PubMedGoogle Scholar
  70. Sugahara M, Shiraishi H (1998) Synaptic density of the prefrontal cortex regulated by dopamine instead of serotonin in rats. Brain Res 814: 143-156PubMedCrossRefGoogle Scholar
  71. Teuchert-Noodt G, Breuker KH, Dawirs RR (1991a) Neural lysosome accumulation in degrading synapses of sensory-motor and limbic subsystems in the duck Anas platyrhynchos: Indication of rearrangements during avian brain development? Dev Neurosci 13: 151-163CrossRefGoogle Scholar
  72. Teuchert-Noodt G, Dawirs RR (1991b) Age-related toxicity in prefrontal cortex and caudate putamen complex of gerbils (Meriones unguiculatus) after a single dose of methamphetamine. Neuropharmacol 30: 733-743CrossRefGoogle Scholar
  73. Teuchert-Noodt G, Dawirs RR (1996) Naturally occuring synapse degradation in the developing cerebellum of the mallard (Anas platyrhynchos) and peking duck (Forma domestica). J Brain Res 37: 547-560Google Scholar
  74. Teuchert-Noodt G, Dawirs RR, Hildebrandt K (2000) Adult treatment with methamphetamine transietly decreases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 107: 133-143PubMedCrossRefGoogle Scholar
  75. Toldi J, Laskawi R, Landgrebe M, Wolff JR (1996) Biphasic reorganization of somatotopy in the primary motor cortex follows facial nerve lesions in adult rats. Neurosci Lett 203: 179-182PubMedCrossRefGoogle Scholar
  76. Widman DR, Rosillini RA (1990) Restricted daily exposure to environmental enrichment increases the diversity of exploration. Physiol Behav 47: 57-62PubMedCrossRefGoogle Scholar
  77. Winterfeldt KT, Teuchert-Noodt G, Dawirs RR (1998) Social environment alters both ontogeny of dopamine innervation of the medial prefrontal cortex and maturation of working memory in gerbils (Meriones unguiculatus). J Neurosci Res 52: 201-209CrossRefGoogle Scholar
  78. Wolff JR, Missler M (1992) Synaptic reorganization in developing and adult nervous systems. Ann Anat 174: 393-403PubMedCrossRefGoogle Scholar
  79. Wolff JR, Wagner GP (1983) Selforganization in synaptogenesis: Interaction between the formation of excitatory and inhibitory synapses. In: Basar F, Haken H, Mandell AJ (eds), Synergetics of the brain. Springer, Berlin Heidelberg New York Tokyo, 50-59Google Scholar
  80. Wolff JR, Leutgeb U, Holzgraefe M and Teuchert G (1989) Synaptic remodeling during primary and reactive synaptogenesis. In: Rahmann H (ed), Fundamentals of memory formation: neuronal plasticity and brain function. Fischer, Stuttgart, 68-82Google Scholar
  81. Wright IK, Upton N, Marsden CA (1991) Resocialisation of isolation-reared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiol Behav 50: 1129-1113PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • G. Teuchert-Noodt
    • 1
    • 2
  1. 1.Department of NeuroanatomyFaculty of Biology, University of Bielefeld,Bielefeld
  2. 2.Prof. Dr. G. Teuchert-Noodt Department of NeuroanatomyUniversity of Bielefeld, Faculty of BiologyBielefeldGermany

Personalised recommendations