Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway

  • W.-H. Zheng
  • S. Kar
  • S. Doré
  • R. Quirion
Conference paper


Insulin-like growth factor-I (IGF-I) is a pleiotropic polypeptide with a wide range of actions in both central and peripheral nervous sytems. Over the past few years, we studied the trophic as well as neuromodulatory roles of IGF-I in the brain. Accumulated evidence indicates that IGF-I, apart from regulating growth and development, protects neurons against cell death induced by amyloidogenic derivatives, glucose or serum deprivation via the activation of intracellular pathways implicating phosphatidylinositide 3/Akt kinase, winged-helix family of transcription factor FKHRL1 phosphorylation or production of free radicals. The effects of IGF-I on neuroprotection, glucose metabolism and activity-dependent plasticity suggest the potential usefulness of this growth factor or related mimetics in the treatment of Alzheimer’s disease and other neurodegenerative disorders.


Insulin Receptor Binding Site Selective Protein Tyrosine Kinase Inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenman Y, de Vellis J (1987) Brain neurones develop in a serum and glial free environment: effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res 406: 32-42PubMedCrossRefGoogle Scholar
  2. Araujo DM, Lapchak PA, Collier B, Chabot JG, Quirion R (1989) Insulin-like growth factor-1 (somatomedin-C) receptors in the rat brain: distribution and interaction with the hippocampal cholinergic system. Brain Res 484: 130-138PubMedCrossRefGoogle Scholar
  3. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631-639PubMedCrossRefGoogle Scholar
  4. Auld DS, Kar S, Quirion R (1998) ß-amyloid peptides as direct cholinergic neuromodulators: a missing link. Trends Neurosci 21: 43-49PubMedCrossRefGoogle Scholar
  5. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75: 73-82PubMedGoogle Scholar
  6. Ballard FJ, Wallace JC, Francis GL, Read LC, Tomas FM (1996) Des (1-3)IGF-I: a truncated form of insulin-like growth factor-I. Int J Biochem Cell Biol 28: 1085-1087PubMedCrossRefGoogle Scholar
  7. Beilharz EJ, Bassett NS, Sirimanne ES, Williams CE, Gluckman PD (1995) Insulin-like growth factor-II is induced during wound repair following hypoxic-ischemic injury in the developing rat brain. Mol Brain Res 29: 81-91PubMedCrossRefGoogle Scholar
  8. Berelowitz M, Szabo M, Frohman LA, Firestone S, Chu L, Hintz RL (1981) Somatomedin-C mediates growth hormone negative feed-back by effects on both the hypothalamus and the pituitary. Science 212: 1279-1281PubMedCrossRefGoogle Scholar
  9. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous sytem. J Cell Biol 101: 1371-1378PubMedCrossRefGoogle Scholar
  10. Blair LA, Bence-Hanulec KK, Mehta S, Franke T, Kaplan D, Marshall J (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-I is required for neuronal survival. J Neurosci 19: 1940-1951PubMedGoogle Scholar
  11. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239-259PubMedCrossRefGoogle Scholar
  12. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868PubMedCrossRefGoogle Scholar
  13. Busciglio J, Yeh J, Yankner BA (1993) Beta-amyloid neurotoxicity in human cortical culture is not mediated by excitotoxins. J Neurochem 61: 1565-1568PubMedCrossRefGoogle Scholar
  14. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D (1998) Insulin-like growth factor-I signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121: 19-26PubMedCrossRefGoogle Scholar
  15. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridg E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318-1321PubMedCrossRefGoogle Scholar
  16. Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10: 729-740PubMedCrossRefGoogle Scholar
  17. Castro-Alamancos MA, Arevalo MA, Torres-Aleman I (1996) Involvement of protein kinase C and nitric oxide in the modulation by insulin-like growth factor-I of glutamate-induced GABA release in the cerebellum. Neuroscience 70: 843-847PubMedCrossRefGoogle Scholar
  18. Clemmons DR (1998) Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol 140: 19-24PubMedCrossRefGoogle Scholar
  19. Crews FT, McElhaney R, Freund G, Ballinger WE, Jr Raizada MK (1992) Insulin-like growth factor I receptor binding in brains of Alzheimer’s and alcoholic patients. J Neurochem 58: 1205-1210PubMedCrossRefGoogle Scholar
  20. Daly RJ (1998) The Grb7 family of signalling proteins. Cell Signal 10: 613-618PubMedCrossRefGoogle Scholar
  21. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18: 143-150PubMedCrossRefGoogle Scholar
  22. Denu JM, Lohse DL, Vijayalakshmi J, Saper MA, Dixon JE (1996) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci USA 93: 2493-2498PubMedCrossRefGoogle Scholar
  23. Doré S, Pelletier JP, DiBattista JA, Tardif G, Brazeau P, Martel-Pelletier J (1994) Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation. Posssible role of IGF-I-binding proteins. Arthritis Rheum 37: 253-263PubMedCrossRefGoogle Scholar
  24. Doré S, Krieger C, Kar S, Quirion R (1996) Distribution and levels of insulin-like growth factor (IGF-I and IGF-II) and insulin receptor binding sites in the spinal cords of amyotrophic lateral sclerosis (ALS) patients. Mol Brain Res 41: 128-133PubMedCrossRefGoogle Scholar
  25. Doré S, Kar S, Quirion R (1997a) IGF-I protects and rescues hippocampal neurones against ß-amyloid-and human amylin-induced toxicity. Proc Natl Acad Sci USA 94: 4772-4777CrossRefGoogle Scholar
  26. Doré S, Kar S, Quirion R (1997b) Presence and differential internalization of two distinct insulin-like growth factor (IGF-I and IGF-II) receptors in rat hippocampal formation. Neuroscience 78: 373-383CrossRefGoogle Scholar
  27. Doré S, Kar S, Quirion R (1997c) Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci 20: 326-331CrossRefGoogle Scholar
  28. Doré S, Kar S, Rowe W, Quirion R (1997d) Distribution and levels of [’2s]IGF-I, [1251J1GF-II and [’2st]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 80: 1033-1040CrossRefGoogle Scholar
  29. Doré S, Kar S, Chabot J-G, Quirion R (1999) Impact of neonatal kainate treatment on hippocampal insulin-like growth factor receptors. Neuroscience 91: 1035-1043PubMedCrossRefGoogle Scholar
  30. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3: 1141-1154PubMedGoogle Scholar
  31. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399: 597-601PubMedCrossRefGoogle Scholar
  32. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8: 159-168PubMedCrossRefGoogle Scholar
  33. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87: 5827-5831PubMedCrossRefGoogle Scholar
  34. Guthrie KM, Nguyen T, Gall CM (1995) Insulin-like growth factor-1 mRNA is increased in deafferented hippocampus: spatiotemporal correspondence of a trophic event with axon sprouting. J Comp Neurol 352: 147-160PubMedCrossRefGoogle Scholar
  35. Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp Neurol 131: 193-202PubMedCrossRefGoogle Scholar
  36. Hong M, Lee VM (1997) Insulin and insulin-like growth factor-I regulate tau phosphorylation in cultured human neurons. J Biol Chem 272: 19547-19553PubMedCrossRefGoogle Scholar
  37. Isaksson OG, Ohlsson C, Nilsson A, Isgaard J, Lindahl A (1991) Regulation of cartilage growth by growth hormone and insulin-like growth factor I. Pediatr Nephrol 5: 451-453PubMedCrossRefGoogle Scholar
  38. Jafferali S, Dumont Y, Sotty F, Robitaille Y. Quirion R, Kar S (2000) Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus and cerebellum of normal human and Alzheimer’s disease brains. Synapse (in press)Google Scholar
  39. Johansson AG, Lindh E, Ljunghall S (1993) Growth hormone, insulin-like growth factor I, and bone: a clinical review. J Intern Med 234: 553-560PubMedCrossRefGoogle Scholar
  40. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16: 3-34PubMedGoogle Scholar
  41. Kar S, Baccichet A, Quirion R, Poirier J (1993) Entorhinal cortex lesion induces differential responses in [1251]insulin receptor binding sites in the rat hippocampal formation. Neuroscience 55: 69-80PubMedCrossRefGoogle Scholar
  42. Kar S, Seto D, Doré S, Hanisch U, Quirion R (1997) Insulin-like growth factor-I and -II differentially regulate endogenous acetylcholine release from the hippocampal formation. Proc Natl Acad Sci USA 94: 14054-14059PubMedCrossRefGoogle Scholar
  43. Lackey BR, Gray SL, Henricks DM (2000) Actions and interactions of the IGF system in Alzheimer’s disease: review and hypothesis. Growth Hor IGF Res 10: 1-13CrossRefGoogle Scholar
  44. Lee VM, Brain BJ, Otvos L, Jr Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675-678PubMedCrossRefGoogle Scholar
  45. Lee WH, Javedan S, Bondy CA (1992) Coordinate expression of insulin-like growth factor system components by neurons and neuroglia during retinal and cerebellar development. J Neurosci 12: 4737-4744PubMedGoogle Scholar
  46. Lenoir D, Honegger P (1983) Insulin-like growth factors I (IGF-I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res 283: 205-213PubMedGoogle Scholar
  47. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16: 143-163 Lienhard GE (1994) Insulin. Life without the IRS. Nature 372: 128-129PubMedGoogle Scholar
  48. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90: 7951-7955PubMedCrossRefGoogle Scholar
  49. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706: 181-193PubMedCrossRefGoogle Scholar
  50. Meyerovitch J, Farfel Z, Sack J, Shechter Y (1987) Oral administration of vandate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262: 6658-6662PubMedGoogle Scholar
  51. Nilsson L, Sara VR, Nordberg A (1988) Insulin-like growth factor-I stimulates the release of acetylcholine from rat cortical slices. Neurosci Lett 88: 221-226PubMedCrossRefGoogle Scholar
  52. Pankov YA (1999) Growth hormone and a partial mediator of its biological action, insulin-like growth factor I. Biochemistry (Moscow) 64: 1-7Google Scholar
  53. Price DL, Sisodia SS, Gandy SE (1995) Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8: 268-274PubMedCrossRefGoogle Scholar
  54. Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) Beta-amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer’s disease. Proc Natl Acad Sci USA 90: 10836-10840PubMedCrossRefGoogle Scholar
  55. Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 85: 265-269PubMedCrossRefGoogle Scholar
  56. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8: 447-453PubMedCrossRefGoogle Scholar
  57. Shemer J, Adamo M, Wilson GL, Heffez D, Zick Y, LeRoith D (1987) Insulin-like growth factor I receptors in neuronal and glial cells. Characterization and biological effects in primary culture. J Biol Chem 262: 15476-15482PubMedGoogle Scholar
  58. Traxler P, Furet P (1999) Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 82: 195-206PubMedCrossRefGoogle Scholar
  59. Venters HD, Dantzer R, Kelley KW (2000) A new concept in neurodegeneration: TNFa is a silencer of survival signals. Trends Neurosci 23: 175-180PubMedCrossRefGoogle Scholar
  60. Waters SB, Chen D, Kao AW, Okada S, Holt KH, Pessin JE (1996) Insulin and epidermal growth factor receptors regulate distinct pools of Grb2-SOS in the control of Ras activation. J Biol Chem 271: 18224-18230PubMedCrossRefGoogle Scholar
  61. Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Diez MT, Pelaez F, Ruby C, Kendall RL, Mao X, Griffin P, Calaycay J, Zierath JR, Heck JV, Smith RG, Moller DE (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284: 974-977PubMedCrossRefGoogle Scholar
  62. Zheng W-H, Kar S, Quirion R (2000a) Stimulation of protein kinase C modulates insulin-like growth factor-l-induced Akt activation in PC12 cells. J Biol Chem 275: 13377-13385CrossRefGoogle Scholar
  63. Zheng W-H, Kar S, Quirion R (2000b) Insulin-like growth facor-l-induced phosphorylation of the forkhead family of transcription factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem (submitted)Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • W.-H. Zheng
    • 1
  • S. Kar
    • 1
  • S. Doré
    • 1
  • R. Quirion
    • 2
  1. 1.Douglas Hospital Research Centre, Department of PsychiatryMcGill UniversityMontrealQuebecCanada
  2. 2.Douglas Hospital Research CentreVerdunQuebecCanada

Personalised recommendations