Neurorescuing effects of the GAPDH ligand CGP 3466B

  • P. C. Waldmeier
  • A. A. Boulton
  • A. R. Cools
  • A. C. Kato
  • W. G. Tatton
Conference paper


Deprenyl, used for the treatment of Parkinson’s disease, was reported to possess neurorescuing/antiapoptotic effects independent of its MAO-B inhibiting properties. It is metabolized to (-)-desmethyldeprenyl, which seems to be the active principle, and further to (-)-amphetamine and (-)-methamphetamine, which antagonize its rescuing effects. These complications may explain the limited neurorescuing potential of (-)-deprenyl observed clinically.


PC12 Cell Tyrosine Hydroxylase Left Ordinate Facial Motor Neuron Mesencephalic Dopaminergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrous DN, Dunnett SB (1994) Paw reaching in rats: the staircase test. In: Wouterlood FG (ed) Neuroscience protocols. Elsevier, Amsterdam, 1–11Google Scholar
  2. Andringa G, van Oosten RV, Stoof JC, Cools AR (1999) Systemic administration of CGP 3466B prevents enzymatic and behavioral deficits in 6-OHDA treated rats. Soc Neurosci Abstr 25: 133.20Google Scholar
  3. Ansari KS, Yu PH, Kruck TPA, Tatton WG (1993) Rescue of axotomized immature rat facial motoneurons by R(-)-deprenyl: Stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13: 4042–4053PubMedGoogle Scholar
  4. Ballabriga J, Pellisé A, Ferrer I (1997) L-deprenyl does not reduce brain damage in global forebrain ischemia in adult gerbils (Meriones ungiculatus). J Neurol Sci 148: 1–5PubMedCrossRefGoogle Scholar
  5. Buys YM, Trope GE, Tatton WG (1995) (-)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14: 119–126PubMedCrossRefGoogle Scholar
  6. Calne DB (1995) Selegiline in Parkinson’s disease—No neuroprotective effect: Increased mortality. BMJ 311: 1583–1584PubMedCrossRefGoogle Scholar
  7. Carlile GW, Chalmers-Redman RME, Tatton NA, Pong A, Tatton WG (2000) Reduced apoptosis after NGF and serum withdrawal: Conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57: 2–12PubMedGoogle Scholar
  8. Desole MS, Sciola L, Delogu MR, Sircana S, Migheli R, Miele E (1997) Role of oxidative stress in the manganese and 1-methyl-4-(2’-ethylphenyl)-1,2,3,6-tetrahydropyridineinduced apoptosis in PC12 cells. Neurochem Int 31: 169–176PubMedCrossRefGoogle Scholar
  9. Finnegan KT, Skratt JJ, Irwin I, DeLanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 184: 119–126PubMedCrossRefGoogle Scholar
  10. Gelowitz DL, Paterson IA (1999) Neuronal sparing and behavioral effects of the antiapoptotic drug, (-)Deprenyl, following kainic acid administration. Pharmacol Biochem Behav 62: 255–262PubMedCrossRefGoogle Scholar
  11. Gerlach M, Youdim MBH, Riederer P (1994) Is selegiline neuroprotective in Parkinson’s disease? J Neural Transm Suppl 41: 177–188PubMedGoogle Scholar
  12. Gerlach M, Youdim MBH, Riederer P (1996) Pharmacology of selegiline. Neurology 47 Suppl 3: S137–S145Google Scholar
  13. Hao R, Ebadi M, Pfeiffer RF (1995) Selegiline protects dopaminergic neurons in culture from toxic factor(s) present in the cerebrospinal fluid of patients with Parkinson’s disease. Neurosci Lett 200: 77–80PubMedCrossRefGoogle Scholar
  14. Ishitani R, Chuang DM (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci USA 93: 9937–9941PubMedCrossRefGoogle Scholar
  15. Ishitani R, Kimura M, Sunaga K, Katsube N, Tanaka M, Chuang DM (1996a) An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther 278: 447–454Google Scholar
  16. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996b) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66: 928–935CrossRefGoogle Scholar
  17. Ishitani R, Tanaka M, Sunaga K, Katsube N, Chuang DM (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53: 701–707PubMedGoogle Scholar
  18. Iwasaki Y, Ikeda K, Kobayashi T, Tagaya N, Kinoshita M (1996) Deprenyl and pergolide rescue spinal motor neurons from axotomy-induced neuronal death in the neonatal rat. Neurol Res 18: 168–170PubMedGoogle Scholar
  19. Kato AC, Bernheim L, Waldmeier P, Sagot Y (1997) CGP 3466B, a dibenzoxepine derivative, increases life-span in an animal model of motoneuron disease. Soc Neurosci Abstr 23: 215.14Google Scholar
  20. Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152: 259277Google Scholar
  21. Knollema S, Aukema W, Hom H, Korf J, Ter Horst GJ (1995) L-deprenyl reduces brain damage in rats exposed to transient hypoxia-ischemia. Stroke 26: 18831887Google Scholar
  22. Koller WC (1997) Neuroprotective therapy for Parkinson’s disease. Exp Neurol 144: 2428Google Scholar
  23. Koutsilieri E, Chen T-S, Rausch WD, Riederer P (1996) Selegiline is neuroprotective in primary brain cultures treated with 1-methyl-4-phenylpyridinium. Eur J Pharmacol 306: 181–186PubMedCrossRefGoogle Scholar
  24. Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Müller D, van Oostrum J, Waldmeier P, Fürst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 273: 5821–5828PubMedCrossRefGoogle Scholar
  25. Lahtinen H, Koistinaho J, Kauppinen R, Haapalinna A, Keinänen R, Sivenius J (1997) Selegiline treatment after transient global ischemia in gerbils enhances the survival of CAl pyramidal cells in the hippocampus. Brain Res 757: 260–267PubMedCrossRefGoogle Scholar
  26. Le WD, Jankovic J, Xie WJ, Kong R, Appel SH (1997) (-)-Deprenyl protection of 1methyl-4 phenylpyridium ion (MPP+)-induced apoptosis independent of MAO-B inhibition. Neurosci Lett 224: 197–200PubMedCrossRefGoogle Scholar
  27. LeWitt PA (1993) Neuroprotection by anti-oxidant strategies in Parkinson’s disease. Eur Neurol 33 Suppl 1: 24–30Google Scholar
  28. Mahmood I (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline — An update. Clin Pharmacokinet 33: 91–102PubMedCrossRefGoogle Scholar
  29. Maruyama W, Takahashi T, Naoi M (1998) (-)-deprenyl protects human dopaminergic neuroblastoma SH-SYSY cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70: 2510–2515PubMedCrossRefGoogle Scholar
  30. Mihatsch W, Russ H, Przuntek H (1988) Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl, and t-butyl-4,4-diphenylpiperidine. J Neural Transm 71: 177188Google Scholar
  31. Montoya CP, Campbell HL, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36: 219–228PubMedCrossRefGoogle Scholar
  32. Munirathinam S, Lakshmana MK, Raju TR (1996) (-)-deprenyl attenuates aluminium induced neurotoxicity in primary cortical cultures. Neurodegeneration 5: 161167Google Scholar
  33. Mytilineou C, Cohen G (1985) Deprenyl protects dopamine neurons from neurotoxic effects of 1-methyl-4-phenylpyridinium ion. J Neurochem 45: 1951–1953PubMedCrossRefGoogle Scholar
  34. P. C. Waldmeier et al.Google Scholar
  35. Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow CW (1997a) L-deprenyl protects mesencephalic dopaminergic neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem 68: 33–39CrossRefGoogle Scholar
  36. Mytilineou C, Radcliffe PM, Olanow CW (1997b) L-(—)-desmethylselegiline, a metabolite of selegiline [L-(—)-deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J Neurochem 68: 434–436CrossRefGoogle Scholar
  37. Olanow CW (1992) Early therapy for Parkinson’s disease. Eur Neurol 32 Suppl 1: 30–35 Olanow CW, Mytilineou C, Tatton W (1998) Current status of selegiline as a neuroprotective agent in Parkinson’s disease. Mov Disord 13 Suppl 1: 30–35Google Scholar
  38. Paterson IA, Tatton WG (1998) Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol 42: 312–315PubMedCrossRefGoogle Scholar
  39. Paterson IA, Barber AJ, Gelowitz DL, Voll C (1997) (—)-deprenyl reduces delayed neuronal death of hippocampal pyramidal cells. Neurosci Biobehav Rev 21: 181–186PubMedCrossRefGoogle Scholar
  40. Paterson IA, Waldmeier P, Boulton AA (1998a) CGP 3466 and CGP 3466B prevent cytosine arabinoside-induced apoptosis in cultures of cerebellar neurones. J Neurochem 70 Suppl 1: S11BGoogle Scholar
  41. Paterson IA, Fennig CJ, Gelowitz DL, Waldmeier P, Boulton AA (1998b) CGP3466 prevents neuronal death in models of ischaemia and seizure in vivo. J Neurochem 70 Suppl 1: S6CGoogle Scholar
  42. Paterson IA, Zhang D, Warrington RC, Boulton AA (1998c) R-deprenyl and R-2-heptylN-methylpropargylamine prevent apoptosis in cerebellar granule neurons induced by cytosine arabinoside but not low extracellular potassium. J Neurochem 70: 515–523CrossRefGoogle Scholar
  43. Ragaiey T, Ma JX, Jiang WJ, Greene W, Seigel GM, Stewart WC (1997) L-deprenyl protects injured retinal precursor cells in vitro. J Ocul Pharmacol Ther 13: 479–488PubMedCrossRefGoogle Scholar
  44. Ravikumar R, Lakshmana MK, Rao BSS, Meti BL, Bindu PN, Raju TR (1998) (—)deprenyl attenuates spinal motor neuron degeneration and associated locomotor deficits in rats subjected to spinal cord ischemia. Exp Neurol 149: 123–129PubMedCrossRefGoogle Scholar
  45. Revuelta M, Venero JL, Machado A, Cano J (1997) Deprenyl induces GFAP immunoreactivity in the intact and injured dopaminergic nigrostriatal system but fails to counteract axotomy-induced degenerative changes. Glia 21: 204–216PubMedCrossRefGoogle Scholar
  46. Rinne JO, Röyttä M, Paljärvi L, Rummukainen J, Rinne UK (1991) Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson’s disease. Neurology 41: 859861Google Scholar
  47. Rothblat DS, Schneider JS (1998) The effects of L-deprenyl treatment, alone and combined with GM1 ganglioside, on striatal dopamine content and substantia nigra pars compacta neurons. Brain Res 779: 226–230PubMedCrossRefGoogle Scholar
  48. Roy E, Bédard PJ (1993) Deprenyl increases survival of rat foetal nigral neurones in culture. NeuroReport 4: 1183–1186PubMedGoogle Scholar
  49. Sagot Y, Vejsada R, Kato AC (1997) Clinical and molecular views on motor neuron disease: animal models, neurotrophic factors and bc1–2 oncoprotein. Trends Pharmacol Sci 18: 1–2PubMedGoogle Scholar
  50. Salo PT, Tatton WG (1992) Deprenyl reduces the death of facial motoneurons damaged by axotomy in early life. J Neurosci Res 31: 394–400PubMedCrossRefGoogle Scholar
  51. Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol (Berl) 91: 466–474Google Scholar
  52. Saunders PA, Chen RW, Chuang DM (1999) Nuclear translocation of glyceraldehyde-3phosphate dehydrogenase isoforms during neuronal apoptosis. J Neurochem 72: 925932Google Scholar
  53. Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94: 11669–11674PubMedCrossRefGoogle Scholar
  54. Schmidt DE, Ebert MH, Lynn JC, Whetsell WO (1997) Attenuation of 1-methyl-4phenylpyridinium (MPP+) neurotoxicity by deprenyl in organotypic canine Substantia nigra cultures. J Neural Transm 104: 875–885PubMedCrossRefGoogle Scholar
  55. Neurorescuing effects of the GAPDH ligand CGP 3466B 213Google Scholar
  56. Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic [see comments]. Ann Neurol 32: 795–798PubMedCrossRefGoogle Scholar
  57. Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315: 19–30PubMedCrossRefGoogle Scholar
  58. Shashidharan P, Chalmers-Redman RM, Carlile GW, Rodic V, Gurvich N, Yuen T, Tatton WG, Sealfon SC (1999) Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. NeuroReport 10: 1149–1153PubMedCrossRefGoogle Scholar
  59. Shimazu S, Katsuki H, Akaike A (1999) Deprenyl rescues dopaminergic neurons in organotypic slice cultures of neonatal rat mesencephalon from N-methyl-D-aspartate toxicity. Eur J Pharmacol 377: 29–34PubMedCrossRefGoogle Scholar
  60. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 44: S160—S166PubMedGoogle Scholar
  61. Tatton WG, Chalmers-Redman RME (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (—)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47 Suppl 3: S171—S183PubMedGoogle Scholar
  62. Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672PubMedCrossRefGoogle Scholar
  63. Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (—)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575PubMedCrossRefGoogle Scholar
  64. Tatton WG, Ju WYH, Wadia J, Tatton NA (1996) Reduction of neuronal apoptosis by small molecules: promise for new approaches to neurological therapy. In: Olanow CW, Jenner P, Youdim MBH (eds) Neurodegeneration and neuroprotection in Parkinson’s disease. Academic Press, London, 209–220CrossRefGoogle Scholar
  65. Tatton WG, Chalmers-Redman RME, Ju WYH, Wadia J, Tatton NA (1997) Apoptosis in neurodegenerative disorders: Potential for therapy by modifying gene transcription. J Neural Transm Suppl 49: 245–268PubMedGoogle Scholar
  66. Thiffault C, Lamarre TL, Quirion R, Poirier J (1997) L-deprenyl and MDL72974 do not improve the recovery of dopaminergic cells following systemic administration of MPTP in mouse. Brain Res Mol Brain Res 44: 238–244PubMedCrossRefGoogle Scholar
  67. Todd KG, Butterworth RF (1998) Increased neuronal cell survival after 1-deprenyl treatment in experimental thiamine deficiency. J Neurosci Res 52: 240–246Google Scholar
  68. Tong JX, Rich KM (1997) Diphenylpiperazines enhance regeneration after facial nerve injury. J Neurocytol 26: 339–347Google Scholar
  69. Vaglini F, Pardini C, Cavalletti M, Maggio R, Corsini GU (1996) L-deprenyl fails to protect mesencephalic dopamine neurons and PC12 cells from the neurotoxic effect of 1-methyl-4-phenyl pyridinium ion. Brain Res 741: 68–74PubMedCrossRefGoogle Scholar
  70. van Hilten J, Bloem BR, Klaassen AA (1996) Deprenyl’s neuroprotective action remains unresolved. Ann Neurol 40: 266–267PubMedCrossRefGoogle Scholar
  71. Wadia JS, Chalmers-Redman RME, Ju WJH, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: Time course and modification by (—)-deprenyl. J Neurosci 18: 932–947PubMedGoogle Scholar
  72. Waldmeier PC, Spooren WPJM, Hengerer B (2000) CGP 3466 protects dopaminergic neurons in lesion models of Parkinson’s disease. Naunyn-Schmiedeberg’s Arch Pharmacol (in press)Google Scholar
  73. Ward CD (1994) Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry 57: 217–220PubMedCrossRefGoogle Scholar
  74. Wolf A, Greiner B, Roman D, Grub S, Medina J, Bobadilla M, Schramm U (1999) Specific antiapoptotic activity of the neurorescuing compound TCH346. Toxicol Sci 48 (Suppl): 87, Abstr. No. 406Google Scholar
  75. Wu R-M, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of 1deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243: 241–247PubMedCrossRefGoogle Scholar
  76. P. C. Waldmeier et al.: Neurorescuing effects of the GAPDH ligand CGP 3466BGoogle Scholar
  77. Wu R-M, Murphy DL, Chiueh CC (1995) Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm 100: 53–61CrossRefGoogle Scholar
  78. Zhang F, Richardson PM, Holland DP, Guo Q, Tatton WG (1995) CNTF or (—)deprenyl in immature rats: Survival of axotomized facial motoneurons and weight loss. J Neurosci Res 40: 564–570PubMedCrossRefGoogle Scholar
  79. Authors’ address: Peter C. Waldmeier, Nervous System Research, Novartis Pharma Ltd., K-125–607, CH-4002 Basel, Switzerland. E-mail: peter.waldmeier@pharma. Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • P. C. Waldmeier
    • 1
  • A. A. Boulton
    • 2
  • A. R. Cools
    • 3
  • A. C. Kato
    • 4
  • W. G. Tatton
    • 5
  1. 1.Nervous System ResearchNovartis Pharma LtdBasel
  2. 2.Neuropsychiatric Research UnitUniversity of SaskatchewanSaskatchewan
  3. 3.Department PsychoneuropharmacologyUniversity of NijmegenNijmegen
  4. 4.Department of APSIC and Division of Clinical Neuromuscular ResearchFaculty of Medicine,Geneva UniversityGeneva
  5. 5.Department of NeurologyMount Sinai School of MedicineNY

Personalised recommendations