Skip to main content

Neurorescuing effects of the GAPDH ligand CGP 3466B

  • Conference paper
Advances in Research on Neurodegeneration

Summary

Deprenyl, used for the treatment of Parkinson’s disease, was reported to possess neurorescuing/antiapoptotic effects independent of its MAO-B inhibiting properties. It is metabolized to (-)-desmethyldeprenyl, which seems to be the active principle, and further to (-)-amphetamine and (-)-methamphetamine, which antagonize its rescuing effects. These complications may explain the limited neurorescuing potential of (-)-deprenyl observed clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrous DN, Dunnett SB (1994) Paw reaching in rats: the staircase test. In: Wouterlood FG (ed) Neuroscience protocols. Elsevier, Amsterdam, 1–11

    Google Scholar 

  • Andringa G, van Oosten RV, Stoof JC, Cools AR (1999) Systemic administration of CGP 3466B prevents enzymatic and behavioral deficits in 6-OHDA treated rats. Soc Neurosci Abstr 25: 133.20

    Google Scholar 

  • Ansari KS, Yu PH, Kruck TPA, Tatton WG (1993) Rescue of axotomized immature rat facial motoneurons by R(-)-deprenyl: Stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13: 4042–4053

    PubMed  CAS  Google Scholar 

  • Ballabriga J, PellisĂ© A, Ferrer I (1997) L-deprenyl does not reduce brain damage in global forebrain ischemia in adult gerbils (Meriones ungiculatus). J Neurol Sci 148: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Buys YM, Trope GE, Tatton WG (1995) (-)-Deprenyl increases the survival of rat retinal ganglion cells after optic nerve crush. Curr Eye Res 14: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Calne DB (1995) Selegiline in Parkinson’s disease—No neuroprotective effect: Increased mortality. BMJ 311: 1583–1584

    Article  PubMed  CAS  Google Scholar 

  • Carlile GW, Chalmers-Redman RME, Tatton NA, Pong A, Tatton WG (2000) Reduced apoptosis after NGF and serum withdrawal: Conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57: 2–12

    PubMed  CAS  Google Scholar 

  • Desole MS, Sciola L, Delogu MR, Sircana S, Migheli R, Miele E (1997) Role of oxidative stress in the manganese and 1-methyl-4-(2’-ethylphenyl)-1,2,3,6-tetrahydropyridineinduced apoptosis in PC12 cells. Neurochem Int 31: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Finnegan KT, Skratt JJ, Irwin I, DeLanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 184: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Gelowitz DL, Paterson IA (1999) Neuronal sparing and behavioral effects of the antiapoptotic drug, (-)Deprenyl, following kainic acid administration. Pharmacol Biochem Behav 62: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Youdim MBH, Riederer P (1994) Is selegiline neuroprotective in Parkinson’s disease? J Neural Transm Suppl 41: 177–188

    PubMed  CAS  Google Scholar 

  • Gerlach M, Youdim MBH, Riederer P (1996) Pharmacology of selegiline. Neurology 47 Suppl 3: S137–S145

    Google Scholar 

  • Hao R, Ebadi M, Pfeiffer RF (1995) Selegiline protects dopaminergic neurons in culture from toxic factor(s) present in the cerebrospinal fluid of patients with Parkinson’s disease. Neurosci Lett 200: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Chuang DM (1996) Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc Natl Acad Sci USA 93: 9937–9941

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Kimura M, Sunaga K, Katsube N, Tanaka M, Chuang DM (1996a) An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther 278: 447–454

    CAS  Google Scholar 

  • Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996b) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66: 928–935

    Article  CAS  Google Scholar 

  • Ishitani R, Tanaka M, Sunaga K, Katsube N, Chuang DM (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53: 701–707

    PubMed  CAS  Google Scholar 

  • Iwasaki Y, Ikeda K, Kobayashi T, Tagaya N, Kinoshita M (1996) Deprenyl and pergolide rescue spinal motor neurons from axotomy-induced neuronal death in the neonatal rat. Neurol Res 18: 168–170

    PubMed  CAS  Google Scholar 

  • Kato AC, Bernheim L, Waldmeier P, Sagot Y (1997) CGP 3466B, a dibenzoxepine derivative, increases life-span in an animal model of motoneuron disease. Soc Neurosci Abstr 23: 215.14

    Google Scholar 

  • Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152: 259277

    Google Scholar 

  • Knollema S, Aukema W, Hom H, Korf J, Ter Horst GJ (1995) L-deprenyl reduces brain damage in rats exposed to transient hypoxia-ischemia. Stroke 26: 18831887

    Google Scholar 

  • Koller WC (1997) Neuroprotective therapy for Parkinson’s disease. Exp Neurol 144: 2428

    Google Scholar 

  • Koutsilieri E, Chen T-S, Rausch WD, Riederer P (1996) Selegiline is neuroprotective in primary brain cultures treated with 1-methyl-4-phenylpyridinium. Eur J Pharmacol 306: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, MĂĽller D, van Oostrum J, Waldmeier P, FĂĽrst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 273: 5821–5828

    Article  PubMed  CAS  Google Scholar 

  • Lahtinen H, Koistinaho J, Kauppinen R, Haapalinna A, Keinänen R, Sivenius J (1997) Selegiline treatment after transient global ischemia in gerbils enhances the survival of CAl pyramidal cells in the hippocampus. Brain Res 757: 260–267

    Article  PubMed  CAS  Google Scholar 

  • Le WD, Jankovic J, Xie WJ, Kong R, Appel SH (1997) (-)-Deprenyl protection of 1methyl-4 phenylpyridium ion (MPP+)-induced apoptosis independent of MAO-B inhibition. Neurosci Lett 224: 197–200

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA (1993) Neuroprotection by anti-oxidant strategies in Parkinson’s disease. Eur Neurol 33 Suppl 1: 24–30

    Google Scholar 

  • Mahmood I (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline — An update. Clin Pharmacokinet 33: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Takahashi T, Naoi M (1998) (-)-deprenyl protects human dopaminergic neuroblastoma SH-SYSY cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70: 2510–2515

    Article  PubMed  CAS  Google Scholar 

  • Mihatsch W, Russ H, Przuntek H (1988) Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl, and t-butyl-4,4-diphenylpiperidine. J Neural Transm 71: 177188

    Google Scholar 

  • Montoya CP, Campbell HL, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Munirathinam S, Lakshmana MK, Raju TR (1996) (-)-deprenyl attenuates aluminium induced neurotoxicity in primary cortical cultures. Neurodegeneration 5: 161167

    Google Scholar 

  • Mytilineou C, Cohen G (1985) Deprenyl protects dopamine neurons from neurotoxic effects of 1-methyl-4-phenylpyridinium ion. J Neurochem 45: 1951–1953

    Article  PubMed  CAS  Google Scholar 

  • P. C. Waldmeier et al.

    Google Scholar 

  • Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow CW (1997a) L-deprenyl protects mesencephalic dopaminergic neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem 68: 33–39

    Article  CAS  Google Scholar 

  • Mytilineou C, Radcliffe PM, Olanow CW (1997b) L-(—)-desmethylselegiline, a metabolite of selegiline [L-(—)-deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J Neurochem 68: 434–436

    Article  CAS  Google Scholar 

  • Olanow CW (1992) Early therapy for Parkinson’s disease. Eur Neurol 32 Suppl 1: 30–35 Olanow CW, Mytilineou C, Tatton W (1998) Current status of selegiline as a neuroprotective agent in Parkinson’s disease. Mov Disord 13 Suppl 1: 30–35

    Google Scholar 

  • Paterson IA, Tatton WG (1998) Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol 42: 312–315

    Article  PubMed  CAS  Google Scholar 

  • Paterson IA, Barber AJ, Gelowitz DL, Voll C (1997) (—)-deprenyl reduces delayed neuronal death of hippocampal pyramidal cells. Neurosci Biobehav Rev 21: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Paterson IA, Waldmeier P, Boulton AA (1998a) CGP 3466 and CGP 3466B prevent cytosine arabinoside-induced apoptosis in cultures of cerebellar neurones. J Neurochem 70 Suppl 1: S11B

    Google Scholar 

  • Paterson IA, Fennig CJ, Gelowitz DL, Waldmeier P, Boulton AA (1998b) CGP3466 prevents neuronal death in models of ischaemia and seizure in vivo. J Neurochem 70 Suppl 1: S6C

    Google Scholar 

  • Paterson IA, Zhang D, Warrington RC, Boulton AA (1998c) R-deprenyl and R-2-heptylN-methylpropargylamine prevent apoptosis in cerebellar granule neurons induced by cytosine arabinoside but not low extracellular potassium. J Neurochem 70: 515–523

    Article  CAS  Google Scholar 

  • Ragaiey T, Ma JX, Jiang WJ, Greene W, Seigel GM, Stewart WC (1997) L-deprenyl protects injured retinal precursor cells in vitro. J Ocul Pharmacol Ther 13: 479–488

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar R, Lakshmana MK, Rao BSS, Meti BL, Bindu PN, Raju TR (1998) (—)deprenyl attenuates spinal motor neuron degeneration and associated locomotor deficits in rats subjected to spinal cord ischemia. Exp Neurol 149: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Revuelta M, Venero JL, Machado A, Cano J (1997) Deprenyl induces GFAP immunoreactivity in the intact and injured dopaminergic nigrostriatal system but fails to counteract axotomy-induced degenerative changes. Glia 21: 204–216

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Röyttä M, Paljärvi L, Rummukainen J, Rinne UK (1991) Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson’s disease. Neurology 41: 859861

    Google Scholar 

  • Rothblat DS, Schneider JS (1998) The effects of L-deprenyl treatment, alone and combined with GM1 ganglioside, on striatal dopamine content and substantia nigra pars compacta neurons. Brain Res 779: 226–230

    Article  PubMed  CAS  Google Scholar 

  • Roy E, BĂ©dard PJ (1993) Deprenyl increases survival of rat foetal nigral neurones in culture. NeuroReport 4: 1183–1186

    PubMed  CAS  Google Scholar 

  • Sagot Y, Vejsada R, Kato AC (1997) Clinical and molecular views on motor neuron disease: animal models, neurotrophic factors and bc1–2 oncoprotein. Trends Pharmacol Sci 18: 1–2

    PubMed  CAS  Google Scholar 

  • Salo PT, Tatton WG (1992) Deprenyl reduces the death of facial motoneurons damaged by axotomy in early life. J Neurosci Res 31: 394–400

    Article  PubMed  CAS  Google Scholar 

  • Salonen T, Haapalinna A, Heinonen E, Suhonen J, Hervonen A (1996) Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol (Berl) 91: 466–474

    Google Scholar 

  • Saunders PA, Chen RW, Chuang DM (1999) Nuclear translocation of glyceraldehyde-3phosphate dehydrogenase isoforms during neuronal apoptosis. J Neurochem 72: 925932

    Google Scholar 

  • Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94: 11669–11674

    Article  PubMed  CAS  Google Scholar 

  • Schmidt DE, Ebert MH, Lynn JC, Whetsell WO (1997) Attenuation of 1-methyl-4phenylpyridinium (MPP+) neurotoxicity by deprenyl in organotypic canine Substantia nigra cultures. J Neural Transm 104: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Neurorescuing effects of the GAPDH ligand CGP 3466B 213

    Google Scholar 

  • Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic [see comments]. Ann Neurol 32: 795–798

    Article  PubMed  CAS  Google Scholar 

  • Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Shashidharan P, Chalmers-Redman RM, Carlile GW, Rodic V, Gurvich N, Yuen T, Tatton WG, Sealfon SC (1999) Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. NeuroReport 10: 1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Shimazu S, Katsuki H, Akaike A (1999) Deprenyl rescues dopaminergic neurons in organotypic slice cultures of neonatal rat mesencephalon from N-methyl-D-aspartate toxicity. Eur J Pharmacol 377: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 44: S160—S166

    PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RME (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (—)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47 Suppl 3: S171—S183

    PubMed  Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (—)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Ju WYH, Wadia J, Tatton NA (1996) Reduction of neuronal apoptosis by small molecules: promise for new approaches to neurological therapy. In: Olanow CW, Jenner P, Youdim MBH (eds) Neurodegeneration and neuroprotection in Parkinson’s disease. Academic Press, London, 209–220

    Chapter  Google Scholar 

  • Tatton WG, Chalmers-Redman RME, Ju WYH, Wadia J, Tatton NA (1997) Apoptosis in neurodegenerative disorders: Potential for therapy by modifying gene transcription. J Neural Transm Suppl 49: 245–268

    PubMed  CAS  Google Scholar 

  • Thiffault C, Lamarre TL, Quirion R, Poirier J (1997) L-deprenyl and MDL72974 do not improve the recovery of dopaminergic cells following systemic administration of MPTP in mouse. Brain Res Mol Brain Res 44: 238–244

    Article  PubMed  CAS  Google Scholar 

  • Todd KG, Butterworth RF (1998) Increased neuronal cell survival after 1-deprenyl treatment in experimental thiamine deficiency. J Neurosci Res 52: 240–246

    Google Scholar 

  • Tong JX, Rich KM (1997) Diphenylpiperazines enhance regeneration after facial nerve injury. J Neurocytol 26: 339–347

    Google Scholar 

  • Vaglini F, Pardini C, Cavalletti M, Maggio R, Corsini GU (1996) L-deprenyl fails to protect mesencephalic dopamine neurons and PC12 cells from the neurotoxic effect of 1-methyl-4-phenyl pyridinium ion. Brain Res 741: 68–74

    Article  PubMed  Google Scholar 

  • van Hilten J, Bloem BR, Klaassen AA (1996) Deprenyl’s neuroprotective action remains unresolved. Ann Neurol 40: 266–267

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Chalmers-Redman RME, Ju WJH, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: Time course and modification by (—)-deprenyl. J Neurosci 18: 932–947

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Spooren WPJM, Hengerer B (2000) CGP 3466 protects dopaminergic neurons in lesion models of Parkinson’s disease. Naunyn-Schmiedeberg’s Arch Pharmacol (in press)

    Google Scholar 

  • Ward CD (1994) Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry 57: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Wolf A, Greiner B, Roman D, Grub S, Medina J, Bobadilla M, Schramm U (1999) Specific antiapoptotic activity of the neurorescuing compound TCH346. Toxicol Sci 48 (Suppl): 87, Abstr. No. 406

    Google Scholar 

  • Wu R-M, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of 1deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243: 241–247

    Article  PubMed  CAS  Google Scholar 

  • P. C. Waldmeier et al.: Neurorescuing effects of the GAPDH ligand CGP 3466B

    Google Scholar 

  • Wu R-M, Murphy DL, Chiueh CC (1995) Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm 100: 53–61

    Article  CAS  Google Scholar 

  • Zhang F, Richardson PM, Holland DP, Guo Q, Tatton WG (1995) CNTF or (—)deprenyl in immature rats: Survival of axotomized facial motoneurons and weight loss. J Neurosci Res 40: 564–570

    Article  PubMed  CAS  Google Scholar 

  • Authors’ address: Peter C. Waldmeier, Nervous System Research, Novartis Pharma Ltd., K-125–607, CH-4002 Basel, Switzerland. E-mail: peter.waldmeier@pharma. novartis.com

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Waldmeier, P.C., Boulton, A.A., Cools, A.R., Kato, A.C., Tatton, W.G. (2000). Neurorescuing effects of the GAPDH ligand CGP 3466B. In: Riederer, P., et al. Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6301-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6301-6_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83537-1

  • Online ISBN: 978-3-7091-6301-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics