Homocysteine and alcoholism

  • S. Bleich
  • D. Degner
  • K. Javaheripour
  • C. Kurth
  • J. Kornhuber
Conference paper


Chronic alcohol consumption can induce alterations in the function and morphology of most if not all brain systems and structures. However, the exact mechanism of brain damage in alcoholics remains unknown. Partial recovery of brain function with abstinence suggests that a proportion of the deficits must be functional in origin (i.e. plastic changes of nerve cells) while neuronal loss from selected brain regions indicates permanent and irreversible damage. There is rowing evidence that chronic alcoholism is associated with a derangement in the sulfur amino acid metabolism. Recently, it has been shown that excitatory amino acid (EAA) neurotransmitters and homocysteine levels are elevated in patients who underwent withdrawal from alcohol. Furthermore, it has been found that homocysteine induces neuronal cell damage by timulating NMDA receptors as well as by producing free radicals. Homocysteine neurotoxicity via overstimulation of N- ethyl-D-aspartate receptors may contribute to the pathogenesis of both brain shrinkage and withdrawal seizures linked to alcoholism.


NMDA Receptor Excitatory Amino Acid Alcohol Withdrawal Fatty Acid Ethyl Ester Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barak AJ, Beckenhauer HC, Tuma DJ (1991) Hepatic transmethylation and blood alcohol levels. Alcohol Alcohol 26: 125–128PubMedGoogle Scholar
  2. Barak AJ, Beckenhauer HC, Tuma DJ (1996) Betaine, ethanol, and the liver: a review. Alcohol 13: 395–398PubMedCrossRefGoogle Scholar
  3. Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6: 33383344Google Scholar
  4. Bleich S, Degner D (2000) Reversal of ethanol-induced hepatic steatosis and lipid peroxidation by taurine: a study in rats. Alcohol Alcohol 35: 215PubMedGoogle Scholar
  5. Bleich S, Degner D, Kornhuber J (2000a) Repeated ethanol withdrawal delays development of focal seizures in hippocampal kindling. Alcohol Clin Exp Res 24: 244–245CrossRefGoogle Scholar
  6. Bleich S, Degner D, Wiltfang J, Maler JM, Niedmann P, Cohrs S, Mangholz A, Porzig J, Sprung R, Rüther E, Kornhuber J (2000b) Elevated homocysteine levels in alcohol withdrawal. Alcohol Alcohol 35: 351–354Google Scholar
  7. Bleich S, Degner D, Javaheripour K, Havemann-Reinecke U, Wiltfang J, Maler JM, Hellenbrand U, Rüther E, Kornhuber J (2000c) Brain shrinkage in alcoholism. Do an altered methionine metabolism and oxidative stress play a pathogenetic role? Neurosci Lett (submitted)Google Scholar
  8. Bleich S, Degner D, Kropp S, Rüther E, Kornhuber J (2000d) Red wine, spirits, beer and serum homocysteine. Lancet 356: 9228Google Scholar
  9. Bora PS, Lange LG (1993) Molecular mechanism of ethanol metabolism by human brain to fatty acid ethyl esters. Alcohol Clin Exp Res 17: 28–30PubMedCrossRefGoogle Scholar
  10. Chandler LJ, Newsom H, Sumners C, Crews FT (1993) Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons. J Neurochem 60: 1578–1581PubMedCrossRefGoogle Scholar
  11. Cuenod M, Do KQ, Grandes P, Morino P, Streit P (1990) Localization and release of homocysteic acid, an excitatory sulfur-containing amino acid. J Histochem Cytochem 38: 1713–1715PubMedCrossRefGoogle Scholar
  12. Curtis D, Sparrow R, Brennan L, van der Weyden MB (1994) Elevated serum homocys-teine as a predictor for vitamin B12 or folate deficiency. Eur J Haematol 52: 227–232PubMedCrossRefGoogle Scholar
  13. Di Sclafani V, Ezekiel F, Meyerhoff DJ, MacKay S, Dillon WP, Weiner MW, Fein G (1995) Brain atrophy and cognitive function in older abstinent alcoholic men. Alcohol Clin Exp Res 19: 1121–1126PubMedCrossRefGoogle Scholar
  14. Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: From neuroadaption to neurodegeneration. Prog Neurobiol 56: 385–431PubMedCrossRefGoogle Scholar
  15. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1: 228–237 Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol 176: 228–237Google Scholar
  16. Halsted CH, Keen CL (1990) Alcoholism and micronutrient metabolism and deficiencies. Eur J Gastroenterol Hepatol 2: 399–405Google Scholar
  17. Halsted CH, Robles EA, Mezey E (1971) Decreased jejunal uptake of labeled folic acid (3H-PGA) in alcoholic patients: roles of alcohol and nutrition. N Eng J Med 285: 701706Google Scholar
  18. Harper C (1998) The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol 57: 101–110PubMedCrossRefGoogle Scholar
  19. Hoffman PL, Rabe CS, Grant KA, Valverius P, Hudspith M, Tabakoff B (1990) Ethanol and the NMDA receptor. Alcohol 7: 229–231PubMedCrossRefGoogle Scholar
  20. Hultberg B, Berglund M, Andersson A, Frank A (1993) Elevated plasma homocysteine in alcoholics. Alcohol Clin Exp Res 17: 687–689PubMedCrossRefGoogle Scholar
  21. Kang SS (1995) Critical points for determining moderate hyperhomocyst(e)inaemia. Eur J Clin Invest 25: 806–808PubMedCrossRefGoogle Scholar
  22. Kang SS, Wong PWK (1996) Genetic and nongenetic factors for moderate hyperhomocyst(e)inemia. Atherosclerosis 119: 135–138PubMedCrossRefGoogle Scholar
  23. Kang SS, Wong PWK, Norusis M (1987) Homocysteinemia due to folate deficiency. Metabolism 36: 458–462PubMedCrossRefGoogle Scholar
  24. Kenyon SH, Nicolaou A, Gibbons WA (1998) The effect of ethanol and its metabolites upon methionine synthase activity in vitro. Alcohol 15: 305–309PubMedCrossRefGoogle Scholar
  25. Kim W-K, Pae Y-S (1996) Involvement of N-methyl-D-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci Lett 216: 117–120PubMedGoogle Scholar
  26. Kornhuber J, Bleich S (1999) Memantin. In: Riederer P, Laux G, Pöldinger W (eds). Neuro-Psychopharmaka, 2. edn, vol 5. Springer Wien New York, 685–704Google Scholar
  27. Kornhuber J, Weller M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 43: 91–104PubMedGoogle Scholar
  28. Kril JJ, Halliday GM (1999) Brain shrinkage in alcoholics: a decade on and what have we learned? Prog Neurobiol 58: 381–387PubMedCrossRefGoogle Scholar
  29. Lieber CS (1988) Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Eng J Med 319: 1639–1650CrossRefGoogle Scholar
  30. Lipton SA, Rosenberg PA (1994) Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. N Eng J Med 330: 613622Google Scholar
  31. Lipton SA, Kim WK, Choi YB, Kumar S, Dèmilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the Nmethyl-D-aspartate receptor. Proc Natl Acad Sci USA 94: 5923–5928PubMedCrossRefGoogle Scholar
  32. Lustig HS, Chan J, Greenberg DA (1992) Ethanol inhibits excitotoxicity in cerebral cortical cultures. Neurosci Lett 135: 259–261PubMedCrossRefGoogle Scholar
  33. Mares P, Folbergrova J, Langmeier M, Haugvicova R, Kubova H (1997) Convulsant action of D,L-homocysteic acid and its stereoisomers in immature rats. Epilepsia 38: 767–776PubMedCrossRefGoogle Scholar
  34. McCully KS (1993) Chemical pathology of homocysteine. I Atherogenesis. Ann Clin Lab Sci 23: 477–493PubMedGoogle Scholar
  35. Outinen PA, Sood SK, Liaw PCY, Sarge KD, Maeda N, Hirsh J, Ribau J, Podor TJ, Weitz JI, Austin RC (1998) Characterization of the stress-inducing effects of homocysteine. Biochem J 332: 213–221PubMedGoogle Scholar
  36. Pfefferbaum A, Sullivan EV, Mathalon DH, Shear PK, Rosenbloom MJ, Lim KO (1995) Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics. Alcohol Clin Exp Res 19: 1177–1191PubMedCrossRefGoogle Scholar
  37. Quinn CT, Griener JC, Bottiglieri T, Hyland K, Farrow A, Kamen BA (1997) Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol 15: 2800–2806PubMedGoogle Scholar
  38. Refsum H, Ueland PM, Nygârd O, Vollset SE (1998) Homocysteine and cardiovascular disease. Ann Rev Med 49: 31–62PubMedCrossRefGoogle Scholar
  39. Spanagel R, Kornhuber J (1999) Glutamate receptor agonists and alcohol dependence. Nervenarzt 70: 479–481PubMedCrossRefGoogle Scholar
  40. Sullivan LW, Herbert V (1964) Suppression of hematopoiesis by ethanol. J Clin Invest 43: 2048–2061PubMedCrossRefGoogle Scholar
  41. Thompson GA, Kilpatrick IC (1996) The neurotransmitter candidature of sulphur-containing excitatory amino acids in the mammalian central nervous system. Pharmacol Ther 72: 25–36PubMedCrossRefGoogle Scholar
  42. Tsai GE, Ragan P, Chang R, Chen S, Linnoila VM, Coyle JT (1998) Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal. Am J Psychiatry 155: 726–732PubMedGoogle Scholar
  43. Authors’ address: Dr. Stefan Bleich, MD, Georg-August-University, Department of Psychiatry, Von-Siebold-Strasse 5, D-37075 Göttingen, Germany. Email: stefan.bleich@t-online.de Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • S. Bleich
    • 1
  • D. Degner
    • 1
  • K. Javaheripour
    • 2
  • C. Kurth
    • 1
  • J. Kornhuber
    • 1
  1. 1.Department of PsychiatryGeorg-August-University of GöttingenGöttingenFederal Republic of Germany
  2. 2.Department of NeuroradiologyGeorg-August-University of GöttingenGöttingenFederal Republic of Germany

Personalised recommendations