Efficient Methods in Hyperthermia Treatment Planning

  • T. Köhler
  • P. Maass
  • P. Wust


The aim of this paper is to describe and analyse functionals which can be used for computing hyperthermia treatment plans. All these functionals have in common that they can be optimised by efficient numerical methods. These methods have been implemented and tested with real data from the Rudolf Virchow Klinikum, Berlin. The results obtained by these methods are comparable to those obtained by comparatively expansive global optimisation techniques.


Sobolev Norm Generalise Eigenvalue Problem Total Electrical Field Inhomogeneous Body Regional Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bardati, A. Borrani, A. Gerardino, G.A. Lovisolo, SAR Optimization in a Phased Array Radiofrequency Hyperthermia System, IEEE Trans, on Biomed. Eng. 42 (1995), S.1201–1207.CrossRefGoogle Scholar
  2. 2.
    R. Beck, P. Deuflhard, H.C. Hege, M. Seebass, D. Stalling, Numerical Algorithms and Visualization in Medical Treatment Planning, in H.C. Hege, K. Poltier (Hrsg.), Visualization and Mathematics, Berlin 1997, S.303–325.CrossRefGoogle Scholar
  3. 3.
    M. Böhm, J. Kremer, A.K. Louis, Efficient algorithm for computing optimal control of antennas in hyperthermia, Surv. Math. Ind 3 (1993), S.233–251.MATHGoogle Scholar
  4. 4.
    C. Groβmann, J. Terno, Numerik der Optimierung, Stuttgart 1993.Google Scholar
  5. 5.
    J.D. Jackson, Klassische Elektrodynamik, Stuttgart 1983.Google Scholar
  6. 6.
    G. Joos, Lehrbuch der Theoretischen Physik, Wiesbaden 1989.Google Scholar
  7. 7.
    T. Köhler, Effiziente Algorithmen für die Optimierung der Therapie-Planung zur regionalen Hyperthermic, Dissertation, Universität Potsdam (1999).Google Scholar
  8. 8.
    J. Kremer, A.K. Louis, On the mathematical foundation of hyperthermia treatment, Math. Meth. Appl. Set. 13 (1990), S.467–479.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Lang, B. Erdmann, M. Seebass, Impact of Nonlinear heat Transfer on Temperature Control in Regional Hyperthermia, Preprint SC 97–73, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (1997).Google Scholar
  10. 10.
    C. Müller, Grundprobleme der mathematischen Theorie elektromagnetischer Schwingungen, Berlin — Göttingen — Heidelberg 1957.MATHGoogle Scholar
  11. 11.
    K.S. Nikita, N.G. Maratos, N.K. Uzunoglu, Optimal Steady-State Temperature Distribution for a Phased Array Hyperthermia System, IEEE Trans, on Biomed. Eng. 40 (1993), S.1299–1306.CrossRefGoogle Scholar
  12. 12.
    R.B. Roemer, Inverse Techniques for Estimating Complete Temperature Distributions during Hyperthermia Cancer Therapy, presented at French Heat Transfer Society (SFT) National Conference, Poitiers (1995).Google Scholar
  13. 13.
    P. Wust, K. Dieckmann, H. Stahl, M. Seebass, J. Nadobny, R. Felix, Technologische Grundlagen und Entwicklungsmöglichkeiten der regionalen Hyperthermic, Minimal Invasive Medizin — MED TECH 4 (1993), S.16–21.Google Scholar
  14. 14.
    P. Wust, M. Seebass, J. Nadobny, P. Deuflhard, G. Mönich, R. Felix, Simulation studies promote technological development of radiofrequency phased array hyperthermia, Int. J. Hyperthermia 12 (1996), S.477–494.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • T. Köhler
    • 1
  • P. Maass
    • 1
  • P. Wust
    • 2
  1. 1.Zentrum für TechnomathematikUniversität BremenBremenGermany
  2. 2.Rudolf Virchow Klinikum BerlinGermany

Personalised recommendations