Skip to main content

Carleman Estimates and Inverse Problems in the Last Two Decades

  • Chapter
Surveys on Solution Methods for Inverse Problems

Abstract

Carleman estimates are a powerful tool which was originally proposed by T. Carleman in 1939 for proofs of uniqueness results for ill-posed Cauchy problems. Since 1981 this tool has been applied to inverse problems for PDEs. The goal of this paper is to provide a tutorial-like short review of the role which Carleman estimates play in three fundamental issues of inverse problems: uniqueness, stability, and numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. E. Anikonov, Multidimensional Inverse and Ill-Posed Problems for Differential Equations, VSP, Netherlands, 1995

    MATH  Google Scholar 

  2. A. L. Bukhgeim, Carleman estimates for Volterra operators and uniqueness of inverse problems, in Non-classical Problems of Mathematical Physics, published by Computing Center of Siberian Branch of Soviet Academy of Science, Novosibirsk, 1981, 56–69 (in Russian).

    Google Scholar 

  3. A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Soviet Math. Dokl. 24 (1981), 244–247.

    Google Scholar 

  4. A. L. Bukhgeim, Introduction to the Theory of Inverse Problems, Nauka, Norosibirsk, 1988 (in Russian).

    Google Scholar 

  5. T. Carleman, Sur un probléme d’unicité pour les systémes d’équations aux dérivées partielles á deux variables indépendantes, Ark. Mat. Astr. Fys., 26B, No. 17 (1939), 1–9.

    MathSciNet  Google Scholar 

  6. Yu. A. Gryazin, M. V. Klibanov, and T. R. Lucas, Imaging the diffusion coefficient in a parabolic inverse problem in optical tomography, Inverse Problems, 15 (1999), 373–397.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Gutman, M. V. Klibanov, and A. V. Tikhonrarov, Global convexity in a single source 3-D inverse scattering problem, IMA J. Appl. Math., 55 (1995), 281–302.

    Article  MATH  MathSciNet  Google Scholar 

  8. O. Yu. Imanuvilov, Boundary controllability of parabolic equations, Russian Math. Surveys, 48 (1993), 192–194.

    MathSciNet  Google Scholar 

  9. O. Yu. Imanuvilov and M. Yamamoto, Lipshitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229–1245.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  11. M. A. Kazemi and M. V. Klibanov, Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities, Applicable Analysis, 50 (1993), 93–102.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. V. Klibanov, Uniqueness in the large of some multidimensional inverse problems, in Non-classical Problems of Mathematical Physics, published by Computing Center of Siberian Branch of Soviet Academy of Science, Novosibirsk, 1981, 101–114 (in Russian).

    Google Scholar 

  13. M. V. Klibanov, Inverse problems in the–large— and Carleman bounds, Differential Equations, 20 (1984), 755–760.

    MATH  Google Scholar 

  14. M. V. Klibanov, On a class of inverse problems, Soviet Math. Dokl., 26 (1982), 248–250.

    MATH  Google Scholar 

  15. M. V. Klibanov, Uniqueness in the large of solutions of inverse problems for a class of differential equations, Differential Equations, 21 (1985), 1390–1395.

    Google Scholar 

  16. M. V. Klibanov, A class of inverse problems for nonlinear parabolic equations, Siberian Math. J., 27 (1987), 698–707.

    Article  Google Scholar 

  17. M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575–596.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace’s equation, SIAM J. Appl. Math., 51 (1991), 1653–1675.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. V. Klibanov and Rakesh, Numerical solution of a timelike Cauchy problem for the wave equation, Math. Methods, Appl. Sci. 15 (1992), 554–570.

    Article  MathSciNet  Google Scholar 

  20. M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data, Inverse Problems, 7 (1991), 577–596.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. V. Klibanov and O. V. Ioussoupova, Uniform strict convexity of a cost functional for 3-D inverse scattering problem, SIAM J. Math. Anal., 26 (1995), 147–179.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. V. Klibanov, Global convexity in diffusion tomography, Nonlinear-World, 4 (1997), 247–265.

    MATH  MathSciNet  Google Scholar 

  23. M. V. Klibanov, Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal., 28 (1997), 1371–1388.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. V. Klibanov, T. R. Lucas, and R. M. Frank, A fast and accurate imaging algorithm in optical/diffusion tomography, Inverse Problems, 13 (1997), 1341–1361.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. V. Klibanov and T. R. Lucas, Method and apparatus for detecting an abnormality within a host medium, United States Patent No. 5.963,658; issue date October 5, 1999.

    Google Scholar 

  26. M. V. Klibanov, T. R. Lucas, and R. M. Frank, Image 1 reconstruction from experimental data in diffusion tomography, in Computational Radiology Imaging, IMA Proceedings, 110, 157–181, Springer-Verlag, New York, 1999.

    Chapter  Google Scholar 

  27. M. V. Klibanov and T. R. Lucas, Numerical solution of a parabolic inverse problem in optical tomography using experimental data. SIAM J. Appl. Math., 59 (1999), 1763–1789.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Lattes and J.-L. Lions, The Method of Quasi-Reversibility: Applications to Partial Differential Equations, Elsevier, New York, 1969.

    MATH  Google Scholar 

  29. M. M. Lavrentiev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, AMS, Providence, R.I., 1986.

    Google Scholar 

  30. R. G. Muhometov, Inverse seismic kinematic problem on the plane, in Mathematical Problems of Geophysics, published by Computing Center of Siberian Branch of Acad, of Sci., Novosibirsk, 1975, 243–252 (in Russian).

    Google Scholar 

  31. R. G. Muhometov, The reconstructions problem of a two-dimensional Riemanian metric and integral geometry, Soviet Math. Dokl., 18 (1977), 32–35.

    MathSciNet  Google Scholar 

  32. A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 142 (1995), 71–96.

    MathSciNet  Google Scholar 

  33. J. P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, 12 (1996), 995–1002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

Klibanov, M.V. (2000). Carleman Estimates and Inverse Problems in the Last Two Decades. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds) Surveys on Solution Methods for Inverse Problems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6296-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6296-5_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83470-1

  • Online ISBN: 978-3-7091-6296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics