The Linear Sampling Method in Inverse Scattering Theory

  • David Colton
  • Andreas Kirsch
  • Peter Monk


A survey is given of the linear sampling method for solving the inverse scattering problem of determing the support of an inhomogeneous medium from a knowledge of the far field pattern of the scattered field. An application is given to the problem of detecting leukemia in the human body.


Line Source Inverse Scattering Scattered Field Field Pattern Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colton, D. and Kirsch, A., A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12(1966), 383–393.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Colton, D., Kirsch, A. and Päivärinta, A., Far field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal. 20 (1989), 1472–1483.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Colton, D. and Kress, R., Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium, SIAM J. Appl Math. 55 (1995), 1724–1735.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Second Ed., Springer-Verlag, New York, 1998.MATHGoogle Scholar
  5. 5.
    Colton, D. and Monk, P., A linear sampling method for the detection of leukemia using microwaves, SIAM J. Appl. Math. 58 (1998), 926–941.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Colton, D. and Monk, P., Mathematical problems in microwave medical imaging, in Computational Radiology and Imaging: Therapy and Diagnostics, C. Börgers and F. Natterer, eds., Springer-Verlag, New York, 1999, 137–156.CrossRefGoogle Scholar
  7. 7.
    Colton, D. and Monk, P., A linear sampling method for the detection of leukemia using microwaves II, submitted for publication.Google Scholar
  8. 8.
    Colton, D., Piana, M. and Potthast, R., A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems 13 (1997), 1477–1493.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Coyle, J., Direct and Inverse Problems in Electromagnetic Scattering from Anisotropic Objects, Ph.D. Thesis, University of Delaware, Newark, 1998.Google Scholar
  10. 10.
    Harrington, R. and Mautz, J., An impedance sheet approximation for thin dielectric shells, IEEE Trans. Antennas and Propagation 23 (1975), 531–534.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.MATHGoogle Scholar
  12. 12.
    Kirsch, A., Characterization of the shape of the scattering obstacle by the spectral data of the far field operator, Inverse Problems 14 (1998), 1489–1512.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirsch, A., Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, to appear.Google Scholar
  14. 14.
    Langenberg, K. J., Applied inverse problems for acoustic, electromagnetic and elastic wave scattering, in Basic Methods of Tomography and Inverse Problems, P.C. Sabatier, ed., Adam Hilger, Bristol, 1987, 125–467.Google Scholar
  15. 15.
    Potthast, R., On a concept of uniqueness in inverse scattering for a finite number of incident waves, SIAM J. Appl. Math. 58 (1998), 666–682.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ringrose, J. R., Compact, Non-Self-Adjoint Operators, Van Nostrand Rein-hold Co., London, 1971.MATHGoogle Scholar
  17. 17.
    Sun, Z. and Uhlmann, G., Recovery of singularities for formally determined inverse problems, Comm. Math. Physics 153 (1993), 431–445.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V. and Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems, Kluwer, Dordrecht, 1995.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • David Colton
  • Andreas Kirsch
    • 2
  • Peter Monk
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Mathematisches Institut IIUniversität KarlsruheKarlsruheGermany

Personalised recommendations