Advertisement

A Survey of Regularization Methods for First-Kind Volterra Equations

  • Patricia K. Lamm

Abstract

We survey continuous and discrete regularization methods for first-kind Volterra problems with continuous kernels. Classical regularization methods tend to destroy the non-anticipatory (or causal) nature of the original Volterra problem because such methods typically rely on computation of the Volterra adjoint operator, an anticipatory operator. In this survey we pay special attention to particular regularization methods, both classical and nontraditional, which tend to retain the Volterra structure of the original problem. Our attention will primarily be focused on linear problems, although extensions of methods to nonlinear and integro-operator Volterra equations are mentioned when known.

Keywords

Regularization Method Tikhonov Regularization Volterra Integral Equation Volterra Equation Local Regularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Theory

  1. 1.
    Corduneanu, C: Integral equations and applications, Cambridge University Press, Cambridge, 1991.MATHGoogle Scholar
  2. 2.
    Eldén, L.: An algorithm for the regularization of ill-conditioned, banded least squares problems, SIAM J. Sci. Statist. Comput. 5 (1984) no. 1, 237–254.MATHMathSciNetGoogle Scholar
  3. 3.
    Engl, H. W., Gfrerer, H.: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math. 4 (1988) no. 5, 395–417.MATHMathSciNetGoogle Scholar
  4. 4.
    Engl, H. W., Hanke, M., Neubauer, A.: Regularization of inverse problems, Kluwer Academic Publishers Group, Dordrecht, 1996.MATHGoogle Scholar
  5. 5.
    Faber, V., Manteuffel, T. A., White, Jr., A. B., Wing, G. M.: Asymptotic behavior of singular values and singular functions of certain convolution operators, Comput. Math. Appl. Ser. A 12 (1986) no. 6, 733–747.MATHMathSciNetGoogle Scholar
  6. 6.
    Faber, V., Wing, G. M.: Asymptotic behavior of singular values of convolution operators, Rocky Mountain J. Math. 16 (1986) no. 3, 567–574.MATHMathSciNetGoogle Scholar
  7. 7.
    Gripenberg, G., Londen, S.-O., Staffans, 0.: Volterra integral and functional equations, Cambridge University Press, Cambridge-New York, 1990.MATHGoogle Scholar
  8. 8.
    Groetsch, C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind, Pitman (Advanced Publishing Program), Boston-London, 1984.MATHGoogle Scholar
  9. 9.
    Lavrent’ev, M. M. Savel’ev, L. Ya.: Linear operators and ill-posed problems, Consultants Bureau, New York, 1995.Google Scholar
  10. 10.
    Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsver-fahren, Numer. Math. 28 (1977) no. 3, 329–341.MATHMathSciNetGoogle Scholar
  11. 11.
    Natterer, F.: The mathematics of computerized tomography, B. G. Teubner, Stuttgart, 1986.MATHGoogle Scholar
  12. 12.
    Nohel, J. A., Shea, D. F.: Frequency domain methods for Volterra equations, Advances in Math. 22 (1976) no. 3, 278–304.MATHMathSciNetGoogle Scholar
  13. 13.
    Raus, T.: Residue principle for ill-posed problems. Acta et comment. Univers. Tartuensis 672 (1984) 16–26.MathSciNetGoogle Scholar
  14. 14.
    Schmaedeke, W. W.: Approximate solutions for Volterra integral equations of the first kind, J. Math. Anal. Appl. 23 (1968) 604–613.MATHMathSciNetGoogle Scholar

The Inverse Heat Conduction Problem

  1. 15.
    Alifanov, O. M., Artyukhin, E. A., Rumyantsev, S. V: Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems, Begell House, Inc., New York, 1995.MATHGoogle Scholar
  2. 16.
    Beck, J. V., Blackwell, B., St. Clair, Jr., C. R.: Inverse heat conduction, Wiley-Interscience, 1985.Google Scholar
  3. 17.
    Eldén, L.: Numerical solution of the sideways heat equation, Inverse problems in diffusion processes (Lake St. Wolfgang, 1994) SIAM, Philadelphia, PA, 1995, pp. 130–150.Google Scholar
  4. 18.
    Eldén, L.: Numerical solution of the sideways heat equation by difference approximation in time, Inverse Problems 11 (1995) no. 4, 913–923.MATHMathSciNetGoogle Scholar
  5. 19.
    Engl, H. W., Rundell, W. (eds.): Inverse problems in diffusion processes, Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, 1995.Google Scholar
  6. 20.
    Frankel, J. I.: Residual-minimization least-squares method for inverse heat conduction, Comput. Math. Appl. 32 (1996) no. 4, 117–130.MATHMathSciNetGoogle Scholar
  7. 21.
    Hào, D. N., Reinhardt, H.-J.: On a sideways parabolic equation, Inverse Problems 13 (1997) no. 2, 297–309.MATHMathSciNetGoogle Scholar
  8. 22.
    Hào, D. N., Reinhardt, H.-J.: Recent contributions to linear inverse heat conduction problems, J. Inverse Ill-Posed Probl. 4 (1996) no. 1, 23–32.MATHMathSciNetGoogle Scholar
  9. 23.
    Janno, J., Wolfersdorf, L. V.: Identification of memory kernels in general linear heat flow, J. Inverse Ill-Posed Probl. 6 (1998) 141–164.MATHMathSciNetGoogle Scholar
  10. 24.
    Janno, J., Wolfersdorf, L. V.: Inverse problems for identification of memory kernels in heat flow, J. Inverse Ill-Posed Probl. 4 (1996) 39–66.MATHMathSciNetGoogle Scholar
  11. 25.
    Kurpisz, K., Nowak, A. J.: Inverse thermal problems, Computational Mechanics Publications, Southampton, 1995.MATHGoogle Scholar
  12. 26.
    Liu, J.: A stability analysis on Beck’s procedure for inverse heat conduction problems, J. Comput. Phys. 123 (1996) no. 1, 65–73.MATHMathSciNetGoogle Scholar
  13. 27.
    Liu, J., Guerrier, B., Bénard, C: A sensitivity decomposition for the regularized solution of inverse heat conduction problems by wavelets, Inverse Problems 11 (1995) no. 6, 1177–1187.MATHMathSciNetGoogle Scholar
  14. 28.
    Mejía, C. E., Murio, D. A.: Numerical solution of generalized IHCP by discrete mollification, Comput. Math. Appl. 32 (1996) no. 2, 33–50.MATHMathSciNetGoogle Scholar
  15. 29.
    Murio, D. A., Liu, Y., Zheng, H.: Numerical experiments in multidimensional IHCP on bounded domains, Inverse Problems in Diffusion Processes (Lake St. Wolfgang, 1994) SIAM, Philadelphia, PA, 1995, pp. 151–180.Google Scholar
  16. 30.
    Murio, D. A., Zheng, H. C: A stable algorithm for 3D-IHCP, Comput. Math. Appl. 29 (1995) no. 5, 97–110.MATHMathSciNetGoogle Scholar
  17. 31.
    Regińska, T.: Sideways heat equation and wavelets, J. Comput. Appl. Math. 63 (1995) no. 1–3, 209–214, International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994).MATHMathSciNetGoogle Scholar
  18. 32.
    Regińska, T., Eldén, L.: Solving the sideways heat equation by a wavelet-Galerkin method, Inverse Problems 13 (1997) no. 4, 1093–1106.MATHMathSciNetGoogle Scholar
  19. 33.
    Tautenhahn, U.: Optimal stable approximations for the sideways heat equation, J. Inverse Ill-Posed Probl. 5 (1997) no. 3, 287–307.MATHMathSciNetGoogle Scholar
  20. 34.
    Wolfersdorf, L. V.: Inverse problems for memory kernels in heat flow and viscoelasticity, J. Inverse Ill-Posed Probl. 4 (1996) 341–354.MATHMathSciNetGoogle Scholar
  21. 35.
    Zhan, S., Murio, D. A.: Identification of parameters in one-dimensional IHCP, Comput. Math. Appl. 35 (1998) no. 3, 1–16.MathSciNetGoogle Scholar
  22. 36.
    Zheng, H., Murio, D. A.: 3D-IHCP on a finite cube, Comput. Math. Appl. 31 (1996) no. 1, 1–14.MATHMathSciNetGoogle Scholar

Singular Perturbation Theory and Regularization Methods

  1. 37.
    Angell, J. S., Olmstead, W. E.: Singularly perturbed Volterra integral equations, SIAM J. Appl. Math. 47 (1987) no. 1, 1–14.MATHMathSciNetGoogle Scholar
  2. 38.
    Angell, J. S., Olmstead, W. E.: Singularly perturbed Volterra integral equations. II, SIAM J. Appl. Math. 47 (1987) no. 6, 1150–1162.MATHMathSciNetGoogle Scholar
  3. 39.
    Asanov, A.: A class of systems of Volterra integral equations of the first kind, Funktsional. Anal, i Prilozhen. 17 (1983) no. 4, 73–74, English transl.: Functional Analysis and its Applications 17 (1983) 303–4.MATHMathSciNetGoogle Scholar
  4. 40.
    Baev, A. V.: Solution of an inverse problem for the wave equation using a regularizing algorithm, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985) 140–146, 160, English transl.: USSR Comput. Math. Math. Phys. 25 (1985) no. 1, 93–97.MathSciNetGoogle Scholar
  5. 41.
    Denisov, A.M.: The approximate solution of a Volterra equation of the first kind, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975) no. 4, 1053–1056, 1091, English transl.: USSR Comput. Math. Math. Phys. 15 (1975) 237–239.MATHMathSciNetGoogle Scholar
  6. 42.
    Denisov, A. M., Korovin, S. V.: A Volterra-type integral equation of the first kind, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. 1992 (1992) 22–28, 64, English transl.: Moscow Univ. Comp. Math. Cybernetics (1992) 19–24.MathSciNetGoogle Scholar
  7. 43.
    Denisov, A. M., Lorenzi, A.: On a special Volterra integral equation of the first kind, Boll. Un. Mat. Ital. B (7) 9 (1995) 443–457.MathSciNetGoogle Scholar
  8. 44.
    Imanaliev, M. I., Asanov, A.: Solutions of systems of nonlinear Volterra integral equations of the first kind, Dokl. Akad. Nauk SSSR 309 (1989) no. 5, 1052–1055, English transl.: Soviet Math. Dokl. 40 (1990) 610–613.Google Scholar
  9. 45.
    Imanaliev, M. I., Khvedelidze, B. V., Gegeliya, T. G., Babaev, A. A., Botashev, A. I.: Integral equations, Differentsial’nye Uravneniya 18 (1982) no. 12, 2050–2069, 2206, English transl.: Differential Equations 18 (1982) 1442–1458.MathSciNetGoogle Scholar
  10. 46.
    Imomnazarov, B.: Approximate solution of integro-operator equations of Volterra type of the first kind, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985) no. 2, 302–306, 319, English transl.: USSR Comput, Math. Math. Phys. 25 (1985) 199–202.MATHMathSciNetGoogle Scholar
  11. 47.
    Imomnazarov, B.: Regularization of dissipative operator equations of the first kind, Zh. Vychisl. Mat. i Mat. Fiz. 22 (1982) no. 4, 791–800, 1019, English transl.: USSR Comput. Math. Math. Phys. 22 (1982) 22–32.MATHMathSciNetGoogle Scholar
  12. 48.
    Janno, J., Wolfersdorf, L. V.: Regularization of a class of nonlinear Volterra equations of a convolution type, J. Inverse Ill-Posed Probl. 3 (1995) 249–257.MATHMathSciNetGoogle Scholar
  13. 49.
    Kauthen, J.-P.: A survey of singularly perturbed Volterra equations, Appl. Numer. Math. 24 (1997) no. 2–3, 95–114, Volterra centennial (Tempe, AZ, 1996).MATHMathSciNetGoogle Scholar
  14. 50.
    Lavrent’ev, M. M.: Numerical solution of conditionally properly posed problems, Numerical solution of partial differential equations, II (SYNSPADE, 1970) (Proc. Sympos., Univ. Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 417–432.Google Scholar
  15. 51.
    Lavrent’ev, M. M.: O nekotorykh nekorrektnykh zadachakh matematicheskoui fiziki, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1962, English transl. by Robert J. Sacker: Some improperly posed problems of mathematical physics, Springer-Verlag, Berlin, 1967.Google Scholar
  16. 52.
    Magnicki, N. A.: The approximate solution of certain Volterra integral equations of the first kind, Vestnik Moskov. Univ. Ser. XV Vycisl. Mat. Kibernet. 1978 (1978) no. 1, 91–96, English transl.: Moscow Univ. Comput. Math. Cybernetics 1978 (1978) no. 1, 74–78.Google Scholar
  17. 53.
    Sergeev, V. O.: Regularization of Volterra equations of the first kind, Dokl. Akad. Nauk SSSR 197 (1971) 531–534, English transl.: Soviet Math. Dokl. 12 (1971) 501–505.MathSciNetGoogle Scholar

Local Regularization and Sequential Predictor-Corrector Methods

  1. 54.
    Cinzori, A. C, Lamm, P. K.: Future polynomial regularization of ill-posed Volterra equations, submitted, 1998.Google Scholar
  2. 55.
    Lamm, P. K.: Approximation of ill-posed Volterra problems via predictor-corrector regularization methods, SIAM J. Appl. Math. 56 (1996) no. 2, 524–541.MATHMathSciNetGoogle Scholar
  3. 56.
    Lamm, P. K.: Future-sequential regularization methods for ill-posed Volterra equations. Applications to the inverse heat conduction problem, J. Math. Anal. Appl. 195 (1995) no. 2, 469–494.MATHMathSciNetGoogle Scholar
  4. 57.
    Lamm, P. K.: Regularized inversion of finitely smoothing Volterra operators: predictor-corrector regularization methods, Inverse Problems 13 (1997) no. 2, 375–402.MATHMathSciNetGoogle Scholar
  5. 58.
    Lamm, P. K.: Solution of ill-posed Volterra equations via variable-smoothing Tikhonov regularization, Inverse problems in geophysical applications (Yosemite, CA, 1995) SIAM, Philadelphia, PA, 1997, pp. 92–108.Google Scholar
  6. 59.
    Lamm, P. K.: Variable-smoothing regularization methods for inverse problems, To appear in Conf. Proceedings of 6th Mediterranean Conference on Control and Systems (Sardinia, 1998).Google Scholar
  7. 60.
    Lamm, P. K., Elden, L.: Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization, SIAM J. Numer. Anal. 34 (1997) no. 4, 1432–1450.MATHMathSciNetGoogle Scholar
  8. 61.
    Lamm, P. K., Scofield, T. L.: Local regularization methods for the stabilization of ill-posed Volterra problems, preprint, 1998.Google Scholar
  9. 62.
    Lamm, P. K., Scofield, T. L.: Sequential predictor-corrector methods for the variable regularization of Volterra inverse problems, preprint, 1998.Google Scholar

Iterative Methods and Lavrent’ev’s m-times Iterated Method

  1. 63.
    Plato, R.: Iterative and parametric methods for linear ill-posed problems, Habiliationsschrift Fachbereich Mathematik, TU Berlin, 1995.Google Scholar
  2. 64.
    Plato, R.: Lavrentiev’s method for linear Volterra integral equations of the first kind, with applications to the non-destructive testing of optical-fibre preforms, Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996) Springer, Vienna, 1997, pp. 196–211.Google Scholar
  3. 65.
    Plato, R.: On the discrepancy principle for iterative and parametric methods to solve linear ill-posed equations, Numer. Math. 75 (1996) no. 1, 99–120.MATHMathSciNetGoogle Scholar
  4. 66.
    Plato, R.: Resolvent estimates for Abel integral operators and the regularization of associated first kind integral equations, J. Integral Equations Appl. 9 (1997) no. 3, 253–278.MATHMathSciNetGoogle Scholar
  5. 67.
    Plato, R.: The Galerkin scheme for Lavrentiev’s m-times iterated method to solve linear accretive Volterra integral equations of the first kind, BIT 37 (1997) no. 2, 404–423.MATHMathSciNetGoogle Scholar
  6. 68.
    Plato, R.: The Lavrentiev-regularized Galerkin method for linear accretive ill-posed problems, Matimyas Matematika (Journal of the Mathematical Society of the Philippines) Special Issue, August 1998, International Conf. Inverse Problems and Applications, Proc. Manila 1998, pp. 57–66.Google Scholar
  7. 69.
    Plato, R., Hämarik, U.: On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces, Numer. Funct. Anal. Optim. 17 (1996) no. 1–2, 181–195.MATHMathSciNetGoogle Scholar
  8. 70.
    Vasin, V. V.: Monotone iterative processes for nonlinear operator equations and their applications to Volterra equations, J. Inverse Ill-Posed Probl. 4 (1996) no. 4, 331–340.MATHMathSciNetGoogle Scholar
  9. 71.
    Vasin, V. V.: Monotone iterative processes for operator equations in partially ordered spaces, Dokl. Akad. Nauk 349 (1996) no. 1, 7–9.MathSciNetGoogle Scholar

Differentiation and Mollification Methods

  1. 72.
    Hào, D. N.: A mollification method for ill-posed problems, Numer. Math. 68 (1994) no. 4, 469–506.MATHMathSciNetGoogle Scholar
  2. 73.
    Hegland, M., Anderssen, R. S.: A mollification framework for improperly posed problems, Numer. Math. 78 (1998) no. 4, 549–575.MATHMathSciNetGoogle Scholar
  3. 74.
    Kabanikhin, S. I.: Numerical analysis of inverse problems, J. Inverse Ill-Posed Probl. 3 (1995) no. 4, 278–304.MATHMathSciNetGoogle Scholar
  4. 75.
    Louis, A. K.: A unified approach to regularization methods for linear ill-posed problems, Inverse Problems, to appear, May 1998.Google Scholar
  5. 76.
    Louis, A. K.: Application of the approximate inverse to 3D X-ray CT and ultrasound tomography, Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996) Springer, Vienna, 1997, pp. 120–133.Google Scholar
  6. 77.
    Louis, A. K.: Approximate inverse for linear and some nonlinear problems, Inverse Problems 12 (1996) no. 2, 175–190.MATHMathSciNetGoogle Scholar
  7. 78.
    Louis, A. K.: Constructing an approximate inverse for linear and some nonlinear problems in engineering, Inverse problems in engineering, ASME, New York, 1998, pp. 367–374.Google Scholar
  8. 79.
    Louis, A. K., Maaβ, P.: A mollifier method for linear operator equations of the first kind, Inverse Problems 6 (1990) no. 3, 427–440.MATHMathSciNetGoogle Scholar
  9. 80.
    Magnicki, N. A.: A method of regularizing Volterra equations of the first kind, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975) no. 5, 1317–1323, 1363, English transl: USSR Comput. Math. Math. Phys. 15 (1975) 221–228.Google Scholar
  10. 81.
    Murio, D. A.: The mollification method and the numerical solution of ill-posed problems, John Wiley & Sons, Inc., New York, 1993.Google Scholar
  11. 82.
    Srazhidinov, A.: Regularization of Volterra integral equations of the first kind, Differentsial’nye Uravneniya 26 (1990) no. 3, 521–530, 551, English transl: Differential Equations 26 (1990) 390–398.MathSciNetGoogle Scholar

Numerical Methods for First-Kind Volterra Problems

  1. 83.
    Andrade, C, Franco, N. B., McKee, S.: Convergence of linear multistep methods for Volterra first kind equations with k(t, t) = 0, Computing 27 (1981) no. 3, 189–204.MATHMathSciNetGoogle Scholar
  2. 84.
    Baker, C. T. H.: Methods for Volterra equations of first kind, Numerical solution of integral equations (Liverpool-Manchester Summer School, 1973) Clarendon Press, Oxford, 1974, pp. 162–174.Google Scholar
  3. 85.
    Brunner, H.: 1896–1996: One hundred years of Volterra integral equations of the first kind, Appl. Numer. Math. 24 (1997) no. 2–3, 83–93, Volterra centennial (Tempe, AZ, 1996).MathSciNetGoogle Scholar
  4. 86.
    Brunner, H.: Discretization of Volterra integral equations of the first kind, Math. Comp. 31 (1977) no. 139, 708–716.MATHMathSciNetGoogle Scholar
  5. 87.
    Brunner, H.: Discretization of Volterra integral equations of the first kind. II, Numer. Math. 30 (1978) no. 2, 117–136.MATHMathSciNetGoogle Scholar
  6. 88.
    Brunner, H.: On the discretization of Volterra integral equations, Nieuw Arch. Wisk. (4) 2 (1984) no. 2, 189–217.MathSciNetGoogle Scholar
  7. 89.
    Brunner, H.: Open problems in the discretization of Volterra integral equations, Numer. Funct. Anal. Optim. 17 (1996) no. 7–8, 717–736.MATHMathSciNetGoogle Scholar
  8. 90.
    Brunner, H.: Superconvergence of collocation methods for Volterra integral equations of the first kind, Computing 21 (1978/79) no. 2, 151–157.MathSciNetGoogle Scholar
  9. 91.
    Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations, North-Holland Publishing Co., Amsterdam-New York, 1986.MATHGoogle Scholar
  10. 92.
    de Hoog, F., Weiss, R.: High order methods for Volterra integral equations of the first kind, SIAM J. Numer. Anal. 10 (1973) 647–664.MATHMathSciNetGoogle Scholar
  11. 93.
    de Hoog, F., Weiss, R.: On the solution of Volterra integral equations of the first kind, Numer. Math. 21 (1973) 22–32.MATHMathSciNetGoogle Scholar
  12. 94.
    Dixon, J., McKee, S.: A unified approach to convergence analysis of discretization methods for Volterra-type equations, IMA J. Numer. Anal. 5 (1985) no. 1, 41–57.MATHMathSciNetGoogle Scholar
  13. 95.
    Dixon, J., McKee, S., Jeltsch, R.:Convergence analysis of discretization methods for nonlinear first kind Volterra integral equations, Numer. Math. 49 (1986) no. 1, 67–80.MATHMathSciNetGoogle Scholar
  14. 96.
    Eggermont, P. P. B.: Approximation properties of quadrature methods for Volterra integral equations of the first kind, Math. Comp. 43 (1984) no. 168, 455–471.MATHMathSciNetGoogle Scholar
  15. 97.
    Eggermont, P. P. B.: Beyond superconvergence of collocation methods for Volterra integral equations of the first kind, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Birkhauser, Basel, 1985, pp. 110–119.Google Scholar
  16. 98.
    Eggermont, P. P. B.: Collocation for Volterra integral equations of the first kind with iterated kernel, SIAM J. Numer. Anal. 20 (1983) no. 5, 1032–1048.MATHMathSciNetGoogle Scholar
  17. 99.
    Eggermont, P. P. B.: Improving the accuracy of collocation solutions of Volterra integral equations of the first kind by local interpolation, Numer. Math. 48 (1986) no. 3, 263–279.MATHMathSciNetGoogle Scholar
  18. 100.
    Gladwin C. J., Jeltsch R.: Stability of quadrature rule methods for first kind Volterra integral equations, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974) 144–151.MATHMathSciNetGoogle Scholar
  19. 101.
    Huber, A.: Eine Näherungsmethode zur Auflösung Volterrascher Integralgleichungen, Monatsh. Math. Phys. 47 (1939) 240–246.MATHMathSciNetGoogle Scholar
  20. 102.
    Hung, H. S.: The numerical solution of differential and integral equations by spline functions, Technical Summary Report 1053, Mathematics Research Center, University of Wisconsin, 1970.Google Scholar
  21. 103.
    Jones, J. G.: On the numerical solution of convolution integral equations and systems of such equations, Math. Comp. 15 (1961) 131–142.MATHMathSciNetGoogle Scholar
  22. 104.
    Kauthen, J.-P., Brunner, H.: Continuous collocation approximations to solutions of first kind Volterra equations, Math. Comp. 66 (1997) no. 220, 1441–1459.MATHMathSciNetGoogle Scholar
  23. 105.
    Kobayasi, M.: On numerical solution of the Volterra integral equations of the first kind by trapezoidal rule, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. 14 (1967) no. 2, 1–14.MathSciNetGoogle Scholar
  24. 106.
    Linz, P.: A survey of methods for the solution of Volterra integral equations of the first kind, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978) Nijhoff, The Hague, 1980, pp. 183–194.Google Scholar
  25. 107.
    Linz, P.: Analytical and numerical methods for Volterra equations, Society for Industrial and Applied Mathematics (SIAM) Philadelphia, Pa., 1985.MATHGoogle Scholar
  26. 108.
    Linz, P.: Numerical methods for Volterra integral equations of the first kind., Comput. J. 12 (1969) 393–397.MATHMathSciNetGoogle Scholar
  27. 109.
    Linz, P.: Numerical methods of Volterra integral equations with applications to certain boundary value problems, Ph.D. thesis, University of Wisconsin, Madison, 1968.Google Scholar
  28. 110.
    Linz, P.: Product integration methods for Volterra integral equations of the first kind, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971) 413–421.MATHMathSciNetGoogle Scholar
  29. 111.
    Linz, P.: The numerical solution of Volterra integral equations by finite difference methods, Technical Summary Report 825, Mathematics Research Center, University of Wisconsin, 1967.Google Scholar
  30. 112.
    Linz, P.: The solution of Volterra equations of the first kind in the presence of large uncertainties, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 123–130.Google Scholar
  31. 113.
    McAlevey, L. G.: Product integration rules for Volterra integral equations of the first kind, BIT 27 (1987) no. 2, 235–247.MATHMathSciNetGoogle Scholar
  32. 114.
    McKee, S.: A review of linear multistep methods and product integration methods and their convergence analysis for first kind Volterra integral equations, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 153–161.Google Scholar
  33. 115.
    McKee, S.: Best convergence rates of linear multistep methods for Volterra first kind equations, Computing 21 (1978/79) no. 4, 343–358.MathSciNetGoogle Scholar
  34. 116.
    Richter, G. R.: Numerical solution of integral equations of the first kind with nonsmooth kernels, SIAM J. Numer. Anal. 15 (1978) no. 3, 511–522.MATHMathSciNetGoogle Scholar
  35. 117.
    Scott, J. A.: A unified analysis of discretization methods for Volterra-type equations, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Birkhauser, Basel, 1985, pp. 244–255.Google Scholar
  36. 118.
    Scott, J. A., McKee, S.: On the exact order of convergence of discrete methods for Volterra-type equations, IMA J. Numer. Anal. 8 (1988) no. 4, 511–515.MATHMathSciNetGoogle Scholar
  37. 119.
    Taylor, P. J.: The solution of Volterra integral equations of the first kind using inverted differentiation formulae, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976) no. 4, 416–425.MATHMathSciNetGoogle Scholar
  38. 120.
    van der Houwen, P. J., te Riele, H. J. J.: Linear multistep methods for Volterra integral and integro-differential equations, Math. Comp. 45 (1985) no. 172, 439–461.MATHMathSciNetGoogle Scholar
  39. 121.
    Weiss, R., Anderssen, R. S.: A product integration method for a class of singular first kind Volterra equations, Numer. Math. 18 (1971/72) 442–456.MathSciNetGoogle Scholar
  40. 122.
    Wolkenfelt, P. H. M.: Modified multilag methods for Volterra functional equations, Math. Comp. 40 (1983) no. 161, 301–316.MATHMathSciNetGoogle Scholar
  41. 123.
    Wolkenfelt, P. H. M.: Reducible quadrature methods for Volterra integral equations of the first kind, BIT 21 (1981) no. 2, 232–241.MATHMathSciNetGoogle Scholar
  42. 124.
    Young, A.: The application of approximate product integration to the numerical solution of integral equations, Proc. Roy. Soc. London Ser. A. 224 (1954) 561–573.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • Patricia K. Lamm
    • 1
  1. 1.Mathematics Dept.Michigan State UniversityE. LansingUSA

Personalised recommendations