Skip to main content

Convergence Rates Results for Iterative Methods for Solving Nonlinear Ill-Posed Problems

  • Chapter
Surveys on Solution Methods for Inverse Problems

Abstract

The growth of the area of inverse problems within applied mathematics in recent years has been driven both by the needs of applications and by advances in a rigorous convergence theory of regularization methods for the solution of nonlinear ill-posed problems. There are at least two widely used approaches for solving inverse problems in a stable way: Tikhonov regularization and iterative regularization techniques. In this paper we give an overview over the latter. Moreover, we put the analysis of iterative methods for the solution of ill-posed problems into perspective with the analysis of iterative methods for the solution of well-posed problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Ageev, T.V. Bolotova, and V.V. Vasin. Solution to the inverse gravity problem for two interfaces in a medium. Izvestiya, Physics of the Solid Earth. 34:225–227, 1998.

    Google Scholar 

  2. P. Anselone. Collectively Compact Operatar Approximation Theory. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

    MATH  Google Scholar 

  3. A.B. Bakushinskii. The problem of the convergence of the iteratively regularized Gauß-Newton method. Comput. Maths. Math. Phys., 32:1353–1359, 1992.

    MathSciNet  Google Scholar 

  4. A.B. Bakushinskii. Universal linear approximations of solutions to nonlinear operator equations and their application. J. Inv. Ill-Posed Problems, 5:501–521, 1997.

    Article  MathSciNet  Google Scholar 

  5. A.B. Bakushinskii and A.V. Goncharskii. Iterative Methods far the Solution of Incorrect Problems. Nauka, Moscow, 1989. in Russian.

    Google Scholar 

  6. A.B. Bakushinskii and A.V. Goncharskii. Ill-Posed Problems: Theory and Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 1994.

    Book  Google Scholar 

  7. R.E. Bank and D.J. Rose. Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput., 39:453–465, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Bertero and P. Boccacci. Introductian to Inverse Problems in Imaging. IOP Publishing, London, 1998.

    Book  MATH  Google Scholar 

  9. M. Bertero, T.A. Poggio, and V. Torre. Ill-posed problems in early vision. Proc. IEEE, 76:869–889, 1988.

    Article  Google Scholar 

  10. A. Binder, M. Hanke, and O. Scherzer. On the Landweber iteration for nonlinear ill-posed problems. J. Inverse Ill-Posed Probl., 4:381–389, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Blaschke. Some Newton Type Methods for the Regularization of Nonlinear Ill Posed Problems. Universitätsverlag Rudolf Trauner, Linz, Austria, 1996. PhD-Thesis, Schriften der Johannes-Kepler-Universität.

    Google Scholar 

  12. B. Blaschke, A. Neubauer, and O. Scherzer. On convergence rates for the iteratively regularized Gauss-Newton method. IMA J. Numer. Anal., 17:421–436, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Brakhage. On ill-posed problems and the method of conjugate gradients. In [36], pages 177–185, 1987.

    Google Scholar 

  14. F.E. Browder, editor. Nonlinear Functional Analysis, volume 18. Amer. Math. Soc., Providence, 1970. Proc. Symposia in Pure Math.

    Google Scholar 

  15. F.E. Browder and W.V. Petryshyn. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl., 20:197–228, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Burger, V. Capasso, and H.W. Engl. Inverse problems related to crystallization of polymers. Inverse Probl., 15:155–173, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Chavent. New size x curvature conditions for strict quasiconvexity of sets. SIAM J. Cantrol and Optimiz., 29:1348–1372, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Chavent. Quasi-convex sets and size x curvature condition, applications to nonlincar invcrsion. Appl. Math. Optimiz., 24:129–169, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Chavent and K. Kunisch. A geometric theory for l 1-stabilization of the inverse problem in a one-dimensional elliptic equation from an h 2-observation. Appl. Math. Optimiz., 27:231–260, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Chavent and K. Kunisch. Regularization in state space. J. Numer. Anal., 27:535–564, 1993.

    MATH  MathSciNet  Google Scholar 

  21. G. Chavent and K. Kunisch. State space regularization: geometric theory. Appl. Math. Optimiz., 37:243–267, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Chavent and P. C. Sabatier, editors. Inverse Problems of Wave Propagation and Diffraction. Springer, Berlin. 1997.

    MATH  Google Scholar 

  23. X. Chen, M.Z. Nashed, and L. Qi. Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J. Optim., 7:445–462, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. X. Chen and L. Qi. A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Comput. Optim. Appl., 3:157–179, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  25. X. Chen and T. Yamamoto. On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators. Computing, 49:87–94, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Colton, R. Ewing, and W. Rundell, editors. Inverse Problems in Partial Differential Equations. SIAM, Philadelphia, 1990.

    MATH  Google Scholar 

  27. R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19:400–408, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Deuflhard, H.W. Engl, and O. Scherzer. A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Probl., 14:1081–1106, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Deuflhard and G. Heindl. Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal., 16:1–10, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Deuflhard and A. Hohmann. Numerical Analysis. A First Course in Scientific Computation. De Gruyter, Berlin, 1991. Transl. from the German by F.A. Potra and F. Schulz.

    Google Scholar 

  31. P. Deuflhard and A. Hohmann. Numerische Mathematik I. Eine algorithmisch orientierte Einführung (Numerical Mathematics I. An algorithmically oriented Introduction). De Gruyter, Berlin, 1993. 2., überarb. Aufl. (German).

    MATH  Google Scholar 

  32. P. Deuflhard and M. Weiser. Local inexact Newton multilevel FEM for nonlinear elliptic problems. In M-O. Bristeau, G. Etgen, W. Fitzgibbon, J.-L. Lions, J. Periaux, and M. Wheeler, editors, Computational Science for the 21st Century, Tours, France, pages 129–138. Wiley-Interscience-Europe, 1997.

    Google Scholar 

  33. W.G. Dotson Jr. On the Mann iterative process. Trans. Amer. Math. Soc., 149:65–73, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  34. H.W. Engl. Weak convergence of asymptotically regular sequences for nonexpansive mappings and connectors with certain Chebyshef-centers. Nonlinear Analysis, Theory & Applications, 1:495–501, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  35. H.W. Engl. Weak convergence of Mann iteration for nonexpansive mappings without convexity assumptions. Bollettino U.M.I, 14:471–475, 1977.

    MATH  MathSciNet  Google Scholar 

  36. H.W. Engl and C.W. Groetsch, editors. Inverse and Ill-Posed Problems. Academic Press, Boston, 1987.

    MATH  Google Scholar 

  37. H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht, 1996.

    Book  MATH  Google Scholar 

  38. H.W. Engl, K. Kunisch, and A. Neubauer. Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Probl., 5:523–540, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  39. H.W. Engl, A.K. Louis, and W. Rundell, editors. Inverse Problems in Geophysical Applications. SIAM, Philadelphia, 1996.

    Google Scholar 

  40. H.W. Engl, A.K. Louis, and W. Rundell, editors. Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Wien, New York, 1996.

    Google Scholar 

  41. H.W. Engl and J. McLaughlin, editors. Inverse Problems and Optimal Design in Industry.. B.G. Teubner, Stuttgart, 1994.

    Google Scholar 

  42. H.W. Engl and W. Rundell, editors. Inverse Problems in Diffusion Processes. SIAM, Philadelphia, 1995.

    Google Scholar 

  43. S.F. Gilyazov. Iterative solution methods for inconsistent linear equations with non self-adjoint operators. Moscov University Computational Mathematics and Cybernetics, pages 8–13, 1977.

    Google Scholar 

  44. S.F. Gilyazov. Regularizing algorithms based on the conjugate-gradient method. U.S.S.R. Comput. Math. Math. Phys., 26:8–13, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  45. G.H. Golub and D.P. O’Leary. Some history of the conjugate radient method and Lanczos algorithms: 1948–1976. SIAM Review, 31:50–102, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  46. C.W. Groetsch. A note on segmenting Mann iterates. J. Math. Anal. Appl., 40:369–372, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  47. C.W. Groetsch. A nonstationary iterative process for nonexpansive mappings. Proc. Am. Math. Soc., 43:155–158, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  48. C.W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, 1984.

    MATH  Google Scholar 

  49. W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, Heidelberg, New York, 1985.

    MATH  Google Scholar 

  50. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, New York, 1994. Applied Mathematical Sciences 95.

    Google Scholar 

  51. W. Hackbusch. Integral Equations. Theory and Numerical Treatment. Birkhauser, Basel, 1995.

    Google Scholar 

  52. G. Hammerlein and K.-H. Hoffmann, editors. Constructive Methods for the Practical Treatment of Integral Equations. Birkhauser Verlag, Basel, Boston, Stuttgart, 1985. Proceedings of the Conference at the Mathematisches Forschungsinstitut Oberwolfach, June 24–30, 1984. International Series of Numerical Mathematics, Vol. 73.

    Google Scholar 

  53. M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Longman Scientific & Technical, Harlow, 1995. Pitman Research Notes in Mathematics Series.

    Google Scholar 

  54. M. Hanke. A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl., 13:79–95, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  55. M. Hanke. Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Fund. Anal. Optimiz., 18:971–993, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  56. M. Hanke, F. Hettlich, and O. Scherzer. The Landweber iteration for an inverse scattering problem. In [135], pages 909–915, 1995.

    Google Scholar 

  57. M. Hanke, A. Neubauer, and O. Scherzer. A convergence analysis of Landweber iteration for nonlinear ill-posed problems. Numer. Math., 72:21–37, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  58. M. Hanke and C. Vogel. Two-level preconditioners for regularized inverse prohlems 1: theory. Numer. Math., 1999. to appear.

    Google Scholar 

  59. M. Hanke and C. Vogel. Two-level preconditioners for regularized inverse problems II: implementation and numerical results, submitted.

    Google Scholar 

  60. W.M. Haussler. A Kantorovich-type convergence analysis for the Gauss-Newton-method. Numer. Math., 48:119–125, 1986.

    Article  MathSciNet  Google Scholar 

  61. M. Heinkenschloss, C.T. Kelley, and H.T. Tran. Fast algorithms for nonsmooth compact fixed-point problems. SIAM J. Numer. Anal., 29:1769–1792, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  62. F. Hettlich. An iterative method for the inverse scattering problem from soundhard obstacles. Z. Angew. Math. Mech., 76:165–168, 1996.

    MATH  Google Scholar 

  63. F. Hettlich, J. Morgan, and O. Scherzer. On the estimation of interfaces from boundary measurements. In [40], pages 163–178, 1996.

    Google Scholar 

  64. F. Hettlich and W. Rundell. Iterative methods for the reconstruction of an inverse potential problem. Inverse Probl, 12:251–266, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  65. F. Hettlich and W. Rundell. Recovery of the support of a source term ill all elliptic differential equation. Inverse Probl, 13:959–976, 1997.

    MATH  MathSciNet  Google Scholar 

  66. F. Hettlich and W. Rundell. The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl, 14:67–82, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  67. B. Hofmann and O. Scherzer. Local ill-posedness and source conditions of operator equations in Hilbert spaces. Inverse Probl, 14:1189–1206, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  68. T. Holiage. Logarithmic convergence rates of the iteratively regularized Gaufj-Newton method for an inverse potential and an inverse scattering problem. Inverse Probl, 13:1279–1300, 1997.

    Article  Google Scholar 

  69. T. Hohage. Convergence rates of a regularized Newton method in sound-hard inverse scattering. SIAM Numer. Anal., 36:125–142, 1999.

    Article  MathSciNet  Google Scholar 

  70. T. Hohage and C. Schormann. A Newton-type method for a transmission problem in inverse scattering. Inverse Probl, 14:1207–1228, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  71. A. Hohmann. Inexact Gauss Newton methods for parameter dependent nonlinear problems. Shaker, Aachen, 1994. Berichte aus der Mathematik.

    Google Scholar 

  72. S. Kabanikhin, R. Kowar, and O. Scherzer. On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order. J. Inv. Ill-Posed Problems, 6:403–430, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  73. B. Kaltenbacher. Some Newton-type methods for the regularization of nonlinear ill-posed problems. Inverse Probl, 13:729–753, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  74. B. Kaltenbacher. A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems. Numer. Math., 79:501–528, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  75. W.J. Kammerer and M.Z. Nashed. Steepest descent for singular linear operators with nonclosed range. Applicable Analysis, 1:143–159, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  76. W.J. Kammerer and M.Z. Nashed. On the convergence of the conjugate gradient method for singular linear operator equations. SIAM J. Numer. Anal, 9:165–181, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  77. L.W. Kantorowitsch and G.P. Akilow. Funktionalanalysis in normierten Räumen. Akademie Verlag, Berlin, 1964.

    MATH  Google Scholar 

  78. A. Kaplan and R. Tichatschke. Stable Methods for Ill-Posed Problems. Akademie Verlag, Berlin, 1994.

    MATH  Google Scholar 

  79. J.T. King. A minimal error conjugate gradient method for ill-posed problems. Journal of Optimization Theory and Applications, 60:297–304, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  80. K. Kumsch and G. Geymayer. Convergence rates for regularized nonlinear illposed problem. In [81], pages 81–92, 1991.

    Google Scholar 

  81. A. Kurzhanski and I. Lasiecka, editors. Modelling and Inverse Problems of Control for Distributed Parameter Systems. Springer, Berlin, 1991. Lecture Notes in Control and Information Sciences, Vol. 154.

    Google Scholar 

  82. A.K. Louis. Convergence of the conjugate gradient method for compact operators. In H.W. Engl and C.W. Groetsch, editors, [36], pages 177–185, 1987.

    Google Scholar 

  83. A.K. Louis. Inverse und Schlecht Gestellte Probleme. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  84. W.R. Mann. Mean value methods in iteration. Proc. Am. Math. Soc, 4:506–510, 1953.

    Article  MATH  Google Scholar 

  85. St. Maruster. Quasi-nonexpansity and two classical methods for solving nonlinear equations. Proc. Amer. Math. Soc, 62:119–123, 1977.

    MATH  MathSciNet  Google Scholar 

  86. S.F. McCormick. An iterative procedure for the solution of constrained nonlinear equations with applications to optimization problems. Numer. Math., 23:371–385, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  87. S.F. McCormick. The methods of Kacmarcz and row orthogonalization for solving linear equations and least squares problems in Hilbert space. Indiana University Mathematics Journal, 26:1137–1150, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  88. K.H. Meyn. Solution of underdetermined nonlinear equations by stationary iteration methods. Numer. Math., 42:161–172, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  89. V.A. Morozov. On the solution of functional equations by the method of regularization. Soviet Math. Dokl, 7:414–417, 1966.

    MATH  MathSciNet  Google Scholar 

  90. V.A. Morozov. Methods for Solving Incorrectly Posed Problems. Springer Verlag, New York, Berlin, Heidelberg, 1984.

    Book  Google Scholar 

  91. V.A. Morozov. Regularization Methods for Ill-Posed Problems. CRC Press, Boca Raton, 1993.

    MATH  Google Scholar 

  92. M.Z. Nashed, editor. Generalized Inverses and Applications. Academic Press, New York, 1976.

    MATH  Google Scholar 

  93. M.Z. Nashed and O. Scherzer. Least squares and bounded variation regularization with nondifferentiable functional. Num. Fund. Anal, and Optimiz., 19:873–901, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  94. F. Natterer. Numerical solution of bilinear inverse problems. Universtät Münster, Germany, 1998. preprint.

    Google Scholar 

  95. A. Neubauer. Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Probl., 5:541–557, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  96. A. Neubauer and O. Scherzer. Finite-dimensional approximation of Tikhonov regularized solutions of non-linear ill-posed problems. Numer. Fund. Anal, and Optimiz., 11:85–99, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  97. A. Neubauer and O. Scherzer. A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems. Z. Anal. Anwend., 14:369–377, 1995.

    MATH  MathSciNet  Google Scholar 

  98. Z. Opial. Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Amer. Math. Soc., 67:591–597, 1967.

    Article  MathSciNet  Google Scholar 

  99. J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

    MATH  Google Scholar 

  100. C. Outlaw and C.W. Groetsch. Averaging iteration in a Banach space. Bull. Am. Math. Soc., 75:430–432, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  101. W.V. Petryshyn and T.E. Williamson. Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings. J. Math. Anal. Appl., 43:459–497, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  102. L. Qi and X. Chen. A preconditioning proximal Newton method for nondifferentiable convex optimization. Math. Program., 76B:411–429, 1997.

    MathSciNet  Google Scholar 

  103. J. Qi-Nian. On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems. 1998. Preprint, University of Nanjing, China.

    Google Scholar 

  104. R. Ramlau. A modified Landweber-method for inverse problems. Num. Fund. Anal. Opt., 20:79–98, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  105. A. Rieder. A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization. Numer. Math., 75:501–522, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  106. A. Rieder. On convergence rates of inexact Newton regularizations. Preprint, Universität Saarbrücken, 1998.

    Google Scholar 

  107. A. Rieder. On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Probl, pages 309–327, 1999.

    Google Scholar 

  108. P.C. Sabatier (ed.). Some Topics in Inverse Problems. World Scientific, Singapore, 1988.

    Google Scholar 

  109. P.C. Sabatier (ed.). Inverse Methods in Action. Spinger, Berlin, Heidelberg, New York, 1990.

    MATH  Google Scholar 

  110. O. Scherzer. A posteriori error estimates for nonlinear ill-posed problems. submitted.

    Google Scholar 

  111. O. Scherzer. Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl., 194:911–933, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  112. O. Scherzer. A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems. Numer. Fund. Anal. Optimization, 17:197–214, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  113. O. Scherzer. An iterative multi level algorithm for solving nonlinear ill-posed problems. Numer. Math., 80:579–600, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  114. O. Scherzer. A modified Landweber iteration for solving parameter estimation problems. Appl. Math. Optimiz.. 38:45–68, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  115. O. Scherzer. An note on Kacmarz’s method for the solution of ill posed problems. in preparation, 1999.

    Google Scholar 

  116. O. Scherzer, H.W. Engl, and K. Kunisch. Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal., 30:1796–1838. 1993.

    Article  MATH  MathSciNet  Google Scholar 

  117. O. Scherzer and M. Gullikson. An adaptive strategy for updating the damping parameters in an iteratively regularized Gauss-Newton method. JOTA, 100, 1999. to appear.

    Google Scholar 

  118. E. Schock. Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence. In [52], pages 234–243, 1985.

    Google Scholar 

  119. T.I. Seidman and C.R. Vogel. Well posedness and convergence of some regularisation methods for non-linear ill posed problems. Inverse Probl. 5:227–238, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  120. V.P. Tanana. Methods for Solution of Nonlinear Operator Equations. VSP, Utrecht, 1997.

    MATH  Google Scholar 

  121. U. Tautenhahn. On the asymptotical regularization of nonlinear ill-posed problems. Inverse Probl., 10:1405–1418, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  122. A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. John Wiley & Sons, Washington, D.C., 1977. Translation editor: Fritz John.

    Google Scholar 

  123. A.N. Tikhonov. Regularization of incorrectly posed problems. Soviet Math. Dokl., 4:1624–1627, 1963.

    MATH  Google Scholar 

  124. A.N. Tikhonov. Solution of incorrectly formulated problems and the regularization methods. Soviet Math. Dokl., 4:1035–1038, 1963.

    Google Scholar 

  125. A.N. Tikhonov, A. Goncharsky, V. Stepanov, and A. Yagola. Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht, 1995.

    MATH  Google Scholar 

  126. A.N. Tikhonov, A.S. Leonov, A.I. Prilepko, I.A. Vasin, V.A. Vatutin, and A.G. Yagola, editors. Ill-Posed Problems in Natural Sciences. VSP, Utrecht, 1992.

    Google Scholar 

  127. G.M. Vainikko. Error estimates of the successive approximation method for ill-posed problems. Automat. Remote Control, 40:356–363, 1980.

    Google Scholar 

  128. V.V. Vasin. Iterative methods for the approximate solution of ill posed problems with a priori informations and their applications. In [36], pages 211–229, 1987.

    Google Scholar 

  129. V.V. Vasin. Ill-posed problems and iterative approximation of fixed points of pseudo-contractive mappings. In [126], pages 214–223, 1992.

    Google Scholar 

  130. V.V. Vasin. Monotone iterative processes for nonlinear operator equations and their applications to volterra equations. J. Inverse Ill-Posed Probl., 4:331–340, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  131. V.V. Vasin. Monotonic iterative processes for operator equations in semiordered spaces. Dokl. Math. 54, 53:487–489, 1996. Translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 349, No. 1. 7–9.

    Google Scholar 

  132. V.V. Vasin. On the convergence of gradient-type methods for nonlinear equations. Doklady Mathematics, 57:173–175, 1998. Translated from Dokladv Akademii Nauk Vol. 359 (1998), pp. 7–9.

    Google Scholar 

  133. V.V. Vasin and A.L. Ageev. Ill-Posed Problems with A-Priori Information. VSP, Utrecht, 1995.

    MATH  Google Scholar 

  134. V.V. Vasin, I.L. Prutkin, and L.Yu Timerkhanova. Retrieval of a three-dimensional relief of geological boundary from gravity data. Izvestiya, Physics of the Solid Earth, 32:901–905, 1996.

    Google Scholar 

  135. K.-W. Wang, B. Yang, J.Q. Sun, K. Seto, K. Nonami, H.-S. Tzou, S.S. Rao, G.R. Tomlinson, B. Yang, H.T. Banks, G.M.L. Gladwell, M. Link, G. Lallement, T.E. Alberts, C.-A. Tan, and Y.Y. Hung, editors. Proceedings of the 1995 Design Engineering Technical Conferences. The American Society of Mechanical Engineers, New York, 1995. Vibration Control, Analysis, and Identification, Vol. 3, Part C.

    Google Scholar 

  136. J. Weidmann. Lineare Operatoren in Hilberträumen. Teubner, Stuttgart, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

Engl, H.W., Scherzer, O. (2000). Convergence Rates Results for Iterative Methods for Solving Nonlinear Ill-Posed Problems. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds) Surveys on Solution Methods for Inverse Problems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6296-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6296-5_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83470-1

  • Online ISBN: 978-3-7091-6296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics