Advertisement

Low Frequency Electromagnetic Fields in High Contrast Media

  • Liliana Borcea
  • George C. Papanicolaou

Abstract

Using variational principles we construct discrete network approximations for the Dirichlet to Neumann or Neumann to Dirichlet maps of high contrast, low frequency electromagnetic media.

Keywords

Inverse Problem Saddle Point Variational Principle High Contrast Electrical Impedance Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allers, A., Santosa, F.: Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Problems 7 (1990) 515–533.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alessandrini, G.: Stable determination of conductivity by boundary measurements, App. Anal. 27 (1988) 153–172.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alumbaugh, D.L., Morrison, H. F.: Electromagnetic conductivity imaging with an iterative Born inversion, IEEE Transactions on Geosciences and Remote Sensing, 31 (1993) 758–763.CrossRefGoogle Scholar
  4. 4.
    Alumbaugh, L., Morrison, H. F.: Monitoring subsurface changes over time with cross-well electromagnetic tomography, Geophysical Prospecting, 43 (1995) 873–902.CrossRefGoogle Scholar
  5. 5.
    Bender, C. M., Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Inc., New York, 1978.MATHGoogle Scholar
  6. 6.
    Berryman, J. G., Kohn, R. V.: Variational constraints for electrical impedance tomography, Phys. Rev. Lett. 65 (1990) 325–328.CrossRefGoogle Scholar
  7. 7.
    Berryman, J. G.: Convexity properties of inverse problems with variational constraints, J. Franklin Inst. 328 (1991) 1–13.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Borcea, L.: Asymptotic Analysis of Quasistatic Transport in High Contrast Conductive Media, SIAM J. Appl. Math. 59 (1999) 597–639.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Borcea, L., Berryman, J. G., Papanicolaou, G. C: High Contrast Impedance Tomography, Inverse Problems 12 (1996) 935–958.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Borcea, L., Berryman, J. G., Papanicolaou, G. C: Matching pursuit for imaging high contrast conductive media, Inverse Problems 15 (1999) 811–849.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Borcea, L., Papanicolaou, G. C: Network approximation for transport properties of high contrast materials, SIAM J. Appl. Math 58 (1998) 501–539.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Borcea L., Papanicolaou, G.C.: A Hybrid Numerical Method for High Contrast Conductivity Problems, Journal of Computational and Applied Mathematics 87 (1997) 61–78.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Calderón, A. P.: On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica Rinftyo de Janeiro (1980) 65–73.Google Scholar
  14. 14.
    Cheney, M., Isaacson, D.: Distinguishability in impedance imaging, IEEE Trans. Biomed. Eng. 39 (1992) 852–860.CrossRefGoogle Scholar
  15. 15.
    Cherkaeva, E., Tripp, A.: Inverse conductivity problem for noisy measurements, Inverse Problems 12 (1996) 869–883.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cherkaev, A. V., Gibiansky, L. V.: Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli, J. Math. Phys. 35 (1994) 127–145.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I, Wiley, New York (1953) pp. 240–242 (Dirichlet’s principle) and pp. 267–268 (Thomson’s principle).Google Scholar
  18. 18.
    Curtis, E. B., Morrow, J. A.: Determining the resistors in a network, SIAM J. Appl. Math. 50 (1990) 918–930.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Curtis, E.B., Ingerman, D., Morrow, J. A.: Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998) 115–150.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Dines, K. A., Lytle, R. J.: Analysis of electrical conductivity imaging, Geophysics 46 (1981) 1025–1036.CrossRefGoogle Scholar
  21. 21.
    Dobson, D. C., Santosa, F.: Resolution and stability analysis of an inverse problem in electrical impedance tomography: dependence on the input current patterns, SIAM J. Appl. Math. 54 (1994) 1542–1560.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Fannjiang, A., Papanicolaou, G. C: Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54 (1994) 333–408.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fucks, L. F., Cheney, M., Isaacson, D., Gisser, D. G., Newell, J. C: Detection and imaging of electric conductivity and permittivity at low frequency, IEEE Trans. Biomed. Eng. 38 (1991) 1106–1110.CrossRefGoogle Scholar
  24. 24.
    Grünbaum, F. A., Zubelli, J. P.: Diffuse tomography: computational aspects of the isotropic case, Inverse Problems 8 (1992) 421–433.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Habashy, T. M., Groom, R. W., Spies, B. R.: Beyond the Born and Rytov approximations: nonlinear approach to electromagnetic scattering, Journal of Geophysical Research 98 (1993) 1759–1775.CrossRefGoogle Scholar
  26. 26.
    Isaacson, D.: Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Med. Imag. MI-5 (1986) 91–95.CrossRefGoogle Scholar
  27. 27.
    Isaacson, D., Cheney, D.: Current problems in impedance imaging, Inverse problems in partial differential equations, editors: Colton, D., Ewing, R., Rundell, W., SIAM (1990) 141–149.Google Scholar
  28. 28.
    Isakov, V.: Uniqueness and stability in multi-dimensional inverse problems, Inverse Problems 9 (1993) 579–621.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Isakov, V.: Inverse problems for partial differential equations, Springer-Verlag, New York (1998).MATHGoogle Scholar
  30. 30.
    Ito, K., Kunisch, K.: The augmented Lagrangian method for parameter estimation in elliptic systems, SIAM J. Control and Optimization 28 (1990) 113–136.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Jackson, J. D.: Classical Electrodynamics, second ed., Wiley, New York (1974).Google Scholar
  32. 32.
    Kallman, J. S., Berryman, J. G.: Weighted least-squares methods for electrical impedance tomography, IEEE Trans. Med. Imaging 11 (1992) 284–292.CrossRefGoogle Scholar
  33. 33.
    Keller, G. V.: Rock and Mineral Properties, Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory, (ed. Nabighian, M. N.) (1988) 13–52.Google Scholar
  34. 34.
    Keller, J. B.: Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders, J. Appl. Phys. 34 (1963) 991–993.MATHCrossRefGoogle Scholar
  35. 35.
    Keller, J. B.: Effective conductivity of periodic composites composed of two very unequal conductors, J. Math. Phys. 28 (1987) 2516–2520.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kevorkian, J., Cole, J. D.: Multiple scale and singular perturbation methods, Springer Verlag, New York (1996).Google Scholar
  37. 37.
    Kohn, R. V., McKenney, A.: Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems 6 (1990) 389–414.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Kohn, R., Vogelius, M.: Determining conductivity by boundary measurements, Comm. Pure App. Math. 38 (1985) 643–667.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Kohn, R., Vogelius, M.: Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987) 745–777.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kozlov, S. M.: Geometric aspects of averaging, Russian Math. Surveys 44 (1989) 91–144.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Mallat, S., Zhang, Z.: Matching pursuit in a time-frequency dictionary, IEEE Trans. Signal Processing 41 (1993) 3397–3415.MATHCrossRefGoogle Scholar
  42. 42.
    Nachman, A. I.: Global uniqueness for a two-dimensional inverse boundary problem, Annals of Mathematics 142 (1995) 71–96.MathSciNetGoogle Scholar
  43. 43.
    Santosa, F., Vogelius, M.: A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990) 216–243.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 (1987) 153–169.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Sylvester, J., Uhlmann, G.: The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations, editors: Colton, D., Ewing, R., Rundell, W., SIAM (1990) 101–139.Google Scholar
  46. 46.
    Wexler, A., Pry, B., Neuman, M.: Impedance-computed tomography algorithm and system, Appl. Opt. 24 (1985) 3985–3982.CrossRefGoogle Scholar
  47. 47.
    Yorkey, T. J., Webster, J. G., Tompkins, W. J.: Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng. BME-34 (1987) 843–852.Google Scholar
  48. 48.
    Zhou, Q., Becker, A., Morrison, H. F.: Audio-frequency electromagnetic tomography in 2-D, Geophysics (1993) 482–495.Google Scholar
  49. 49.
    Ziman, J. M.: Principles of the Theory of Solids, Cambridge University Press (1971).Google Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • Liliana Borcea
    • 1
  • George C. Papanicolaou
    • 2
  1. 1.Computational and Applied MathematicsRice UniversityHoustonUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations