Biosynthesis of Glycoconjugates

  • Helmut Schenkel-Brunner


The basic aspects of molecular genetics and protein biosynthesis are covered by all introductory courses on biochemistry and molecular biology and will not be discussed in this book. Little attention is paid, however, to the biosynthesis of glyco- conjugates. Since these substances are of pivotal importance for blood group serology, the formation of glycoconjugates will be discussed below in detail.


Blood Group Rough Endoplasmic Reticulum Carbohydrate Chain Acceptor Substrate Oligosaccharide Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, S., Basu, M., Das, K. K., Daussin, F., Schaeper, R. J., Banerjee, P., Khan, F. A. & Suzuki, I. (1988): Solubilized glycosyltransferases and biosynthesis in vitro of glycolipids. Biochimie 70, 1551–1563.PubMedCrossRefGoogle Scholar
  2. 2.
    Bause, E. & Legler, G. (1981): The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem. J. 195, 639–644.PubMedGoogle Scholar
  3. 3.
    Beyer, T. A., Rearick, J. I., Paulson, J. C., Prieels, J. P., Sadler, J. E. & Hill, R. L. (1979): Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J. Biol. Chem. 254, 12531–12541.PubMedGoogle Scholar
  4. 4.
    Brew, K. (1970): Lactose synthetase: evolutionary origins, structure, and control. In: Essays in Biochemistry (P. N. Campbell & Dickens, eds.). Academic Press, London, New York, Vol. 6, pp. 93–118.Google Scholar
  5. 5.
    Burger, K. N. J., Van Der Bijl, P. & VanMeer, G. (1996): Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J. Cell Biol. 133, 15–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Clausen, H. & Bennett, E. P. (1996): A family of UDP-GalNAc: polypeptide N-acetyl-galactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6, 635–646.PubMedCrossRefGoogle Scholar
  7. 7.
    Colley, K. J., Lee, E. U., Adler, B., Browne, J. K. & Paulson, J. C. (1989): Conversion of Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J. Biol. Chem. 264, 17619–17622.PubMedGoogle Scholar
  8. 8.
    Faye, L., Sturm, A., Bollini, R., Vitale, A. & Chrispeels, M. J. (1986): The positon of the oligosaccharide side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. Eur. J. Biochem. 158, 655–661.PubMedCrossRefGoogle Scholar
  9. 9.
    Hakomori, S. I. (1989): Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer. Res. 52, 257–331.PubMedCrossRefGoogle Scholar
  10. 10.
    Holgersson, J., Stromberg, N. & Breimer, M. E. (1988): Glycolipids of human large intestine: difference in glycolipid expression related to anatomical localization, epithelial/non-epithelial tissue and the ABO, Le, and Se phenotypes of the donors. Biochimie 70, 1565–1574.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsieh, P., Rosner, M. R. & Robbins, P. W. (1983): Selective cleavage by endo-β-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J. Biol. Chem. 258, 2555–2561.PubMedGoogle Scholar
  12. 12.
    Ivatt, R. J. (1981): Regulaton of glycoprotein biosynthesis by formation of specific glycosyl-transferase complexes. Proc. Natl. Acad. Sci. USA 78, 4021–4025.PubMedCrossRefGoogle Scholar
  13. 13.
    Kornfeld, R. & Kornfeld, S. (1985): Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.PubMedCrossRefGoogle Scholar
  14. 14.
    La Mont, J. T. & Isselbacher, K. J. (1975): Alterations in glycosyltransferase activity in human colon cancer. J. Natl. Cancer Inst. 54, 53–56.Google Scholar
  15. 15.
    Maccioni, H. J. F., Daniotti, J. L. & Martina, J. A. (1999): Organization of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta 1437, 101–118.PubMedCrossRefGoogle Scholar
  16. 16.
    Paulson, J. C. & Colley, K. J. (1989): Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618.PubMedGoogle Scholar
  17. 17.
    Piller, F. & Cartron, J. P. (1983): UDP-GlcNAc:Galβ1-4Glc(NAc)ß1-3N-acetylglucosaminyltransferase. Identification and characterization in human serum. J. Biol. Chem. 258, 12293–12299.PubMedGoogle Scholar
  18. 18.
    Piller, V., Piller, F., Klier, F. G. & Fukuda, M. (1989): O-glycosylation of leucosialin in K562 cells. Evidence for initiation and elongation in early Golgi compartments. Eur. J. Biochem. 183, 123–135.PubMedCrossRefGoogle Scholar
  19. 19.
    Roth, J. (1984): Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J. Cell Biol. 98, 399–406.PubMedCrossRefGoogle Scholar
  20. 20.
    Roth, J., Greenwell, P. & Watkins, W. M. (1988): Immunolocalization of blood group A gene specified α1,3 N-acetylgalactosaminyltransferase and blood group A substance in the trans-tubular network of the Golgi apparatus and mucus of intestinal goblet cells. Eur. J. Cell Biol. 46, 105–112.PubMedGoogle Scholar
  21. 21.
    Roth, J., Taatjes, D. J., Lucocq, J. M., Weinstein, J. & Paulson, J. C. (1985): Demonstration of an extensive trans-tubular network continuous within the Golgi apparatus stack that may function in glycosylation. Cell 43, 287–295.PubMedCrossRefGoogle Scholar
  22. 22.
    Slomiany, A., Zdebska, E. & Slomiany, B. L. (1984): Structures of the neutral oligosaccharides isolated from A-active human gastric mucin. J. Biol. Chem. 259, 14743–14749.PubMedGoogle Scholar
  23. 23.
    Taatjes, D. J., Roth, J., Weinstein, J. & Paulson, J. C. (1988): Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J. Biol. Chem. 263, 6302–6309.PubMedGoogle Scholar
  24. 24.
    Wandall, H. H., Hassan, H., Mirgorodskaya, E., Kristensen, A. K., Roepstorff, P., Bennett, E. P., Nielsen, P. A., Hollingsworth M. A., Burchell, J., Taylor-Papadimitriou, J. & Clausen, H. (1997): Substrate specificities of three members of the human UDP-N-acetyl-a-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3. J. Biol. Chem. 272, 23503–23514.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson, I. B. H., Gavel, Y. & Von Heijne, G. (1991): Amino acid distributions around O-linked glycosylation sites. Biochem. J. 275, 529–534.PubMedGoogle Scholar
  26. 26.
    Yates, A. D. & Watkins, W. M. (1983): Enzymes involved in the biosynthesis of glycoconjugates. A UDP-2-acetamido-2-deoxy-D-glucose:ß-D-galactopyranosyl-(1->4)-saccharide (1->3)-2-acetamido-2-deoxy-ß-D-glucopyranosyltransferase in human serum. Carbohydr. Res. 120, 251–268.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshida, A., Suzuki, M., Ikenaga, H. & Takeuchi, M. (1997): Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J. Biol. Chem. 272, 16884–16888.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Helmut Schenkel-Brunner
    • 1
  1. 1.Institut für Medizinische BiochemieUniversität WienViennaAustria

Personalised recommendations