• Helmut Schenkel-Brunner


The phenomenon of polyagglutination is characterised by the agglutinability of erythrocytes and some other blood cells by almost all sera from normal human adults, independent of standard blood groups [9,62]. This unusual reactivity is due to the fact that antibodies normally present in human sera bind to secondarily altered erythrocyte membrane antigens.


Blood Group Neuraminic Acid Specific Lectin Human Blood Group Artocarpus Integrifolia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreu, G., Doinel, C., Cartron, J. P. & Mativet, S. (1979): Induction of Tk polyagglutination by Bacteroides fragilis culture supernatants. Blood Transfus. Immunohaematol. 22, 551–561.Google Scholar
  2. 2.
    Anstee, O. J. & Lisowska, E. (1990): Monoclonal antibodies against glycophorins and other glycoproteins. J. Immunogenet. 17, 301–308.PubMedCrossRefGoogle Scholar
  3. 3.
    Baldwin, M. L., Barrasso, C. & Ridolfi, R. L. (1979): Tn polyagglutinability associated with acute myelomonocytic leukemia. Amer. J. Clin. Pathol. 72, 1024–1027.Google Scholar
  4. 4.
    Beck, M. L., Hicklin, B. L., Pierce, S. R. & Edwards, R. L. (1977): Observations on leucocytes and platelets in six cases of Tn polyagglutination. Med. Lab. Sci. 34, 325–332.PubMedGoogle Scholar
  5. 5.
    Berger, E. G. & Kozdrowski, I. (1978): Permanent mixed-field polyagglutinable erythrocytes lack galactosyltransferase activity. FEBS Lett. 93, 105–108.PubMedCrossRefGoogle Scholar
  6. 6.
    Bird, G. W., Wingham, J., Beck, M. L., Pierce, S. R., Oates, G. D. & Pollock, A. (1978): Th, a’ new’ form of erythrocyte polyagglutination. Lancet i, 1215–1216.CrossRefGoogle Scholar
  7. 7.
    Bird, G. W. G. (1964): Anti-T in peanuts. Vox Sang. 9, 748–749.PubMedCrossRefGoogle Scholar
  8. 8.
    Bird, G. W. G. (1977): Compexity of erythrocyte polyagglutinability. Human Blood Groups — 5th International Convocation on Immunology, Buffalo, 1976 (J.F. Mohn, Plunkett, R.W., Cunningham, R.K., and Lambert, R.M., eds). S. Karger, Basel, 335–343.Google Scholar
  9. 9.
    Bird, G. W. G. (1977): Erythrocyte polyagglutination. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T. J. Greenwalt, and E. A. Steane, eds.). CRC Press Inc., Cleveland, Ohio, pp. 443–454.Google Scholar
  10. 10.
    Bird, G. W. G. (1977): Hemagglutination dependent on drugs or other chemical substances. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T. J. Greenwalt, and E. A. Steane, eds.). CRC Press Inc., Cleveland, Ohio, pp. 431–438.Google Scholar
  11. 11.
    Bird, G. W. G. (1977): Lectins. In: CRC Handbook Series in Clinical Laboratory Science. Section D, Blood Banking (D. Seligson, T. J. Greenwalt, and E. A. Steane, eds.). CRC Press Inc., Cleveland, Ohio, pp. 459–473.Google Scholar
  12. 12.
    Bird, G. W. G. (1982): Clinical aspects of red blood cell polyagglutinability of microbial origin. In: Blood Groups and Other Red Cell Surface Markers in Health and Disease (C. Salmon, ed.). Masson Publishing USA, Inc., New York, pp. 55–64.Google Scholar
  13. 13.
    Bird, G. W. G., Shinton, N. K. & Wingham, J. (1971): Persistent mixed-field polyagglutination. Brit. J. Haematol. 21, 443–453.CrossRefGoogle Scholar
  14. 14.
    Bird, G. W. G. & Wingham, J. (1972): Tk: a new form of red cell polyagglutination. Brit. J. Haematol. 23, 759–763.CrossRefGoogle Scholar
  15. 15.
    Bird, G. W. G. & Wingham, J. (1974): The M, N, and NVg receptors of Tn-erythrocytes. Vox Sang. 26, 171–175.PubMedCrossRefGoogle Scholar
  16. 16.
    Bird, G. W. G. & Wingham, J. (1976): More Salvia agglutinins. Vox Sang. 30, 217–219.PubMedCrossRefGoogle Scholar
  17. 17.
    Bird, G. W. G. & Wingham, J. (1977): Yet more Salvia agglutinins. Vox Sang. 32, 121–122.PubMedCrossRefGoogle Scholar
  18. 18.
    Bird, G. W. G. & Wingham, J. (1981): Tn-specific lectins from Lamium. Clin. Lab. Haematol. 3, 169–171.PubMedGoogle Scholar
  19. 19.
    Bird, G. W. G. & Wingham, J. (1981): Vicia cretica: a powerful lectin for T-and Th-but not Tk-or other polyagglutinable erythrocytes. J. Clin. Pathol. 34, 69–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Bird, G. W. G., Wingham, J., Inglis, G. & Mitchell, A. A. B. (1975): Tk polyagglutination in Bacteroides fragilis septicaemia. Lancet i, 286–287.CrossRefGoogle Scholar
  21. 21.
    Bird, G. W. G., Wingham, J. & Liew, Y. W. (1983): Reaction of peanut lectin with ‘pure’ Tk-cryptantigen. Transfusion 23, 271.PubMedCrossRefGoogle Scholar
  22. 22.
    Bird, G. W. G., Wingham, J., Pippard, M. J., Hoult, J. G. & Melikian, V. (1976): Erythrocyte membrane modification in malignant diseases of myeloid and lymphoreticular tissues. I. Tn-polyagglutination in acute myelocytic leukaemia. Brit. J. Haematol. 33, 289–294.CrossRefGoogle Scholar
  23. 23.
    Bird, G. W. G., Wingham, J., Seger, R. & Kenny, A. B. (1982): Tx, a “new” red cell cryptantjgen exposed by pneumococcal enzymes. Blood Transfus. Immunohaematol. 25, 215–216.CrossRefGoogle Scholar
  24. 24.
    Blumenfeld, O. O., Lalezari, P., Khorshidi, M., Puglia, K. & Fukuda, M. (1992): O-linked oligosaccharides of glycophorins A and B in erythrocytes of two individuals with the Tn polyagglutinability syndrome. Blood 80, 2388–2395.PubMedGoogle Scholar
  25. 25.
    Brouet, J. C., Vainchenker, W., Blanchard, D., Testa, U. & Catron, J. P. (1983): The origin of human B and T cells from multipotent stem cells. A study of the Tn syndrome. Eur. J. Immunol. 13, 350–357.PubMedCrossRefGoogle Scholar
  26. 26.
    Byrne, U., Brown, A., Ropars, C. & Moore, B. P. L. (1979): Acquired B antigen, Tk activation and A, destroying enzyme activity in a patient with septicaemia. Vox Sang. 36, 208–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Cartron, J. P., Andreu, G., Cartron, J., Bird, G. W. G., Salmon, C. & Gerbal, A. (1978): Demonstration of T-transferase deficiency in Tn-polyagglutinable blood samples. Eur. J. Biochem. 92, 111–119.PubMedCrossRefGoogle Scholar
  28. 28.
    Cartron, J. P., Blanchard, D., Nurden, A., Cartron, J., Rahuel, C., Lee, D., Vainchenker, W., Testa, U. & Rochant, H. (1982): Tn syndrome: a disorder affecting red blood cell, platelet, and granulocyte cell surface components. In: Blood Groups and Other Red Cell Surface Markers in Health and Disease (C. Salmon, ed).Masson Publishing USA, Inc., New York, pp. 39–54.Google Scholar
  29. 29.
    Cartron, J. P. & Nurden, A. T. (1979): Galactosyltransferase and membrane glycoprotein abnormality in human platelets from Tn-syndrome donors. Nature 282, 621–623.PubMedCrossRefGoogle Scholar
  30. 30.
    Cartron, J. P., Nurden, A. T., Blanchard, D., Lee, H., Dupuis, D. & Salmon, C. (1980): The Tn receptors of human red cells and platelets. Blood Transfus. Immunohaematol. 23, 613–628.CrossRefGoogle Scholar
  31. 31.
    Dahr, W., Gielen, W., Pierce, S. & Schaper, R. (1979): UDP-Gal:GalNAc-α-galactosyl transferase deficiency in Tn-syndrome. In: Glycoconjugates — Proceedings of the 5th International Symposium, Kiel, Germany. (R. Schauer, P. Boer, E. Buddecke, M. F. Kramer, J. F. G. Vliegenthart, and H. Wiegandt, eds.). Georg Thieme Publishers, Stuttgart, pp. 272–273.Google Scholar
  32. 32.
    Dahr, W., Uhlenbruck, G. & Bird, G. W. G. (1974): Cryptic A-like receptor sites in human erythrocyte glycoproteins: proposed nature of Tn-antigen. Vox Sang. 27, 29–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Dahr, W., Uhlenbruck, G. & Bird, G. W. G. (1975): Further characterization of some heterophile agglutinins reacting with alkali-labile carbohydrate chains of human erythrocyte glycoproteins. Vox Sang. 28, 133–148.PubMedCrossRefGoogle Scholar
  34. 34.
    Dahr, W., Uhlenbruck, G., Gunson, H. H. & Van Der Hart, M. (1975): Molecular basis of Tn-polyagglutinability. Vox Sang. 29, 36–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Dahr, W., Uhlenbruck, G., Gunson, H. H. & Van Der Hart, M. (1975): Studies on glycoproteins and glycopeptides from Tn-polyagglutinable erythrocytes. Vox Sang. 28, 249–252.PubMedCrossRefGoogle Scholar
  36. 36.
    Dausset, J., Moullec, J. & Bernard, J. (1959): Acquired hemolytic anemia with polagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn). Blood 14, 1079–1093.PubMedGoogle Scholar
  37. 37.
    Desai, P. R. & Springer, G. F. (1979): Biosynthesis of human blood group T-, N-, and M-specific immunodeterminants on human erythrocyte antigens. J. Immunogenet. 6, 403–417.PubMedCrossRefGoogle Scholar
  38. 38.
    Doinel, C., Andreu, G., Cartron, J. P., Salmon, C. & Fukuda, M. N. (1980): Tk polyagglutination produced in vitro by an endo-β-galactosidase. Vox Sang. 38, 94–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Doinel, C., Rufin, J. M. & Andreu, G. (1981): The Tk antigenic determinant: studies of Tk activated red blood cells with endoglycosidases. Blood Transfus. Immunohaematol. 24, 109–116.CrossRefGoogle Scholar
  40. 40.
    Felner, K. M., Dinter, A., Cartron, J. P. & Berger, E. G. (1998): Repressed β-1,3-galactosyltransferase in the Tn syndrome. Biochim. Biophys. Acta 1406, 115–125.PubMedCrossRefGoogle Scholar
  41. 41.
    Friedenreich, V. (1930): The Thomsen Haemagglutination Phenomenon. Copenhagen, Lewis and Munksgaard.Google Scholar
  42. 42.
    Fukuda, M. N. & Matsumura, G. (1976): Endo-β-galactosidase of E. freundii. Purification and endo-glycosidic action on keratan sulfates, oligosaccharides and blood group active glycoproteins. J. Biol. Chem. 251, 6218–6225.PubMedGoogle Scholar
  43. 43.
    Gottschalk, A. (1960): The Chemistry and Biology of Sialic Acids and Related Substances, Cambridge University Press.Google Scholar
  44. 44.
    Graninger, W., Poschmann, A., Fischer, K., Schedl-Giovannoni, I., Hörandner, H. & Klaushofer, K. (1977): “vA” a new type of erythrocyte polyagglutination characterized by depressed H receptors and associated with hemolytic anaemia. II. Observations by immunofluorescence, electron microscopy, cell electrophoresis and biochemistry. Vox Sang. 32, 201–207.PubMedCrossRefGoogle Scholar
  45. 45.
    Graninger, W., Rameis, H., Fischer, K., Poschmann, A., Bird, G. W. G., Wingham, J. & Neumann, E. (1977): “vA” a new type of erythrocyte polyagglutination characterized by depressed H receptors and associated with hemolytic anaemia. I. Serological and hematological observations. Vox Sang. 32, 195–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Gray, J. M., Beck, M. L. & Oberman, H. A. (1972): Clostridial-induced type I polyagglutinability with associated intravascular haemolysis. Vox Sang. 22, 379–383.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunson, H. H., Betts, J. J. & Nicholson, J. T. (1971): The electrophoretic mobility of Tn polyagglutinable cells. Vox Sang. 21, 455–461.CrossRefGoogle Scholar
  48. 48.
    Gunson, H. H., Stratton, F. & Mullard, G. W. (1970): An example of polyagglutinability due to the Tn antigen. Brit. J. Haematol. 18, 309–316.CrossRefGoogle Scholar
  49. 49.
    Hagen, I., Nurden, A., Bjerrum, O. J., Solum, N. O. & Caen, J. (1980): Immunochemical evidence for protein abnormalities in platelets with Glanzmann’s Thrombasthenia and the Bernard-Soulier syndrome. J. Clin. Invest. 65, 722–731.PubMedCrossRefGoogle Scholar
  50. 50.
    Harris, P. A., Roman, G. K., Moulds, J. J., Bird, G. W. G. & Shah, N. G. (1982): An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang. 42, 134–140.PubMedCrossRefGoogle Scholar
  51. 51.
    Haynes, C. R., Dorner, I., Leonard, G. L., Arrowsmith, W. R. & Chaplin, H. (1970): Persistent polyagglutinability in vivo unrelated to T-antigen activation. Transfusion 10, 43–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Herman, J. H., Shirey, R. S., Smith, B., Kickler, T. S. & Ness, P. M. (1987): Th activation in congenital hypoplastic anemia. Transfusion 27, 253–256.PubMedCrossRefGoogle Scholar
  53. 53.
    Herman, J. H., Whiteheart, W., Shirey, R. S., Johnson, R. J., Kickler, T. S. & Ness, P. M. (1987): Red cell Th activation: biochemical studies. Brit. J. Haematol. 65, 205–209.CrossRefGoogle Scholar
  54. 54.
    Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y. & Hakomori, S. I. (1985): Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and-81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proc. Natl. Acad. Sci. USA 82, 7039–7043.PubMedCrossRefGoogle Scholar
  55. 55.
    Höppner, W., Fischer, K., Poschmann, A. & Paulsen, H. (1985): Use of synthetic antigens with the carbohydrate structure of asialoglycophorin A for the specification of Thomsen-Friedenreich antibodies. Vox Sang. 48, 246–253.PubMedCrossRefGoogle Scholar
  56. 56.
    Howard, D. R. (1979): Expression of T-antigen on polyagglutinable erythrocytes and carcinoma cells: preparation of T-activated erythrocytes, anti-T lectin, anti-T absorbed human serum, and purified anti-T antibody. Vox Sang. 37, 107–110.PubMedCrossRefGoogle Scholar
  57. 57.
    HÜbener, G. (1926): Untersuchungen über die Iso-Agglutination mit besonderer Berücksichtung scheinbarer Abweichungen vom Gruppenschema. Z. Immun.-Forsch. 45, 223–248.Google Scholar
  58. 58.
    Hysell, J. K., Hysell, J. W., Nichols, M. E., Leonardi, R. G. & Marsh, W. L. (1976): In vivo and in vitro activation of T-antigen receptors on leucocytes and platelets. Vox Sang. 31(Suppl. 1), 9–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Inglis, G., Bird, G. W. G., Mitchell, A. A. B., Milne, G. R. & Wingham, J. (1975): The effect of Bacteroides fragilis on the human erythrocyte membrane: pathogenesis of Tk polyagglutination. J. Clin. Pathol. 28, 964–968.PubMedCrossRefGoogle Scholar
  60. 60.
    Inglis, G., Bird, G. W. G., Mitchell, A. A. B., Milne, G. R. & Wingham, J. (1975): Erythrocyte polyagglutination showing properties of both T and Tk, probably induced by Bacteroides fragilis infection. Vox Sang. 28, 314–317.PubMedCrossRefGoogle Scholar
  61. 61.
    Inglis, G., Bird, G. W. G., Mitchell, A. A. B. & Wingham, J. (1978): Tk polyagglutination associated with reduced A and H activity. Vox Sang. 35, 370–374.PubMedCrossRefGoogle Scholar
  62. 62.
    Issitt, P. D. (1985): Polyagglutination. In: Applied Blood Group Serology. Montgomery Scientific Publications, Miami, Florida, USA, pp. 455–476.Google Scholar
  63. 63.
    Itzkowitz, S. H., Yuan, M., Montgomery, C. K., Kjeldsen, D., Takahashi, H. K., Biqbee, W. L & Kim, Y. S. (1989): Expression of Tn, sialosyl-Tn, and T-antigens in human colon cancer. Cancer Res. 49, 197–204.PubMedGoogle Scholar
  64. 64.
    Jokinen, M. (1981): Characterization of glycophorin A and band 3 from Tn polyagglutinable erythrocytes. Scand. J. Haematol. 26, 272–280.PubMedCrossRefGoogle Scholar
  65. 65.
    Judd, W. J., Beck, M. L., Hicklin, B. L., Iyer, P. N. S. & Goldstein, I. J. (1977): BS II Lectin: a second hemagglutinin isolated from Bandeiraea simplicifolia seeds with affinity for type III polyagglutinable red cells. Vox Sang. 33, 246–251.PubMedCrossRefGoogle Scholar
  66. 66.
    Judson, P. A., Spring, F. A., Taylor, M. A. & Anstee, D. J. (1983): Evidence for carbohydrate-deficient forms of the major sialoglycoproteins of human platelets, granulocytes, and T lymphocytes in individuals with Tn syndrome. Immunology 50, 415–422.PubMedGoogle Scholar
  67. 67.
    Kim, Y. D. (1980): Immunochemical characteristics of human anti-T antibodies. Vox Sang. 39, 162–168.PubMedCrossRefGoogle Scholar
  68. 68.
    King, M. J., Parsons, S. F., Wu, A. M. & Jones, N. (1991): Immunochemical studies on the differential binding properties of two monoclonal antibodies reacting with Tn red cells. Transfusion 31, 142–149.PubMedCrossRefGoogle Scholar
  69. 69.
    Kjeldsen, T., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H. & Hakomori, S. I. (1988): Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2→6 α-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res. 48, 2214–2220.PubMedGoogle Scholar
  70. 70.
    Kjeldsen, T., Hakomori, S. I., Springer, G. F., Desai, P., Harris, T. & Clausen, H. (1989): Coexpression of sialosyl-Tn (NeuAca2→6GalNAcα1→o-Ser/Thr) and Tn (GalNAcα→oSer/Thr) blood group antigens on Tn erythrocytes. Vox Sang. 57, 81–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Kusnierz-Alejska, G., Duk, M., Storry, J. R., Reid, M. E., Wiecek, B., Seyfried, H. & Lisowska, E. (1999): NOR polyagglutination and Sta glycophorin in one family: relation of NOR polyagglutination to terminal α-galactose residues and abnormal glycolipids. Transfusion 39, 32–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Lalezari, P. & Al-Mondhiry, H. (1973): Sialic acid deficiency of human red blood cells associated with persistent red cell, leucocyte, and platelet polyagglutinability. Brit. J. Haematol. 25, 399–405.CrossRefGoogle Scholar
  73. 73.
    Lee, L. T., Frank, S., De Jongh, D. S. & Howe, C. (1981): Immunochemical studies on Tn erythrocyte glycoprotein. Blood 58, 1228–1231.PubMedGoogle Scholar
  74. 74.
    Lisowska, E. (1963): Reaction of erythrocyte mucoproteins with anti-N phytoagglutinin from Vicia graminaea seeds. Nature 198, 865–866.PubMedCrossRefGoogle Scholar
  75. 75.
    Lotan, R., Skutelsky, E., Danon, D. & Sharon, N. (1975): The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523.PubMedGoogle Scholar
  76. 76.
    Mahanta, S. K., Sastry, M. V. K. & Surolia, A. (1990): Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia agglutinin). A thermodynamic and circular-dichroism spectroscopic study. Biochem. J. 265, 831–840.PubMedGoogle Scholar
  77. 77.
    Moreau, R., Dausset, J., Bernard, J. & Moullec, J. (1957): Anémie hémolytique acquisé avec polyagglutinabilité des hématies par un nouveau facteur présent dans le sérum humain normal (anti-Tn). Bull. Soc. Med. Hôp. (Paris) 73, 569–587.Google Scholar
  78. 78.
    Mueller, T. J., Li, Y. T. & Morrison, M. (1979): Effect of endo-β-galactosidase on intact human erythrocytes. J. Biol. Chem. 254, 8103–8106.PubMedGoogle Scholar
  79. 79.
    Mullard, G. W., Haworth, C. & Lee, D. (1978): A case of atypical polyagglutinability due to Tk-transformation. Brit. J. Haematol. 40, 571–582.CrossRefGoogle Scholar
  80. 80.
    Myllylä, G., Furuhjelm, U., Nordling, S., Plrkola, A., Tlppett, P., Gavin, J. & Sänger, R. (1971): Persistent mixed-field polyagglutinability. Electrokinetic and serological aspects. Vox Sang. 20, 7–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Nakada, H., Inoue, M., Numata, Y., Tanaka, N., Funakoshi, I., Fukui, S., Mellors, A. & Yamashina, I. (1993): Epitopic structure of Tn glycophorin A for an anti-Tn antibody (MLS 128). Proc. Natl. Acad. Sci. USA 90, 2495–2499.PubMedCrossRefGoogle Scholar
  82. 82.
    Nakada, H., Inoue, M., Numata, Y, Tanaka, N., Funakoshi, I., Fukui, S. & Yamashina, I. (1992): Cancer-associated glycoproteins defined by a monoclonal antibody, MLS 128, recognizing the Tn antigen. Biochem. Biophys. Res. Commun. 187, 217–224.PubMedCrossRefGoogle Scholar
  83. 83.
    Ness, P. M., Garraty, G., Morel, P. A. & Perkins, H. A. (1979): Tn polyagglutination preceding acute leukemia. Blood 54, 30–34.PubMedGoogle Scholar
  84. 84.
    Neter, E. (1956): Bacterial hemagglutination and hemolysis. Bacteriol. Rev. 20, 166–188.PubMedGoogle Scholar
  85. 85.
    Numata, Y., Nakada, H., Fukui, S., Kltagawa, H., Ozaki, K., Inoue, M., Kawasaki, H., Funakoshi, I. & Yamashina, I. (1990): A monoclonal antibody directed to Tn antigen. Biochem. Biophys. Res. Commun. 770, 981–985.CrossRefGoogle Scholar
  86. 86.
    Nurden, A. T., Dupuis, D., Pidard, D., Kieffer, N., Kunicki, T. J. & Cartron, J. P. (1982): Surface modifications in the platelets of a patient with α-N-acetyl-D-galactosamine residues, the Tn syndrome. J. Clin. Invest. 70, 1281–1291.PubMedCrossRefGoogle Scholar
  87. 87.
    Piller, V., Piller, F. & Cartron, J. P. (1986): Isolation and characterization of an N-acetylgalactosamine specific lectin from Salvia sclarea seeds. J. Biol. Chem. 261, 14069–14075.PubMedGoogle Scholar
  88. 88.
    Piller, V., Piller, F. & Cartron, J. P. (1990): Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins. Eur. J. Biochem. 191, 461–466.PubMedCrossRefGoogle Scholar
  89. 89.
    Piller, V., Piller, F. & Fukuda, M. (1990): Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J. Biol. Chem. 265, 9264–9271.PubMedGoogle Scholar
  90. 90.
    Race, R. R. & Sänger, R. (1975): Polyagglutinability. In: Blood Groups in Man. Blackwell Scientific Publications, Oxford, pp. 486–496.Google Scholar
  91. 91.
    Rinderle, S. J., Goldstein, I. J., Matta, K. L & Ratcliffe, R. M. (1989): Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T-(or cryptic T)-antigen. J. Biol. Chem. 264, 16123–16131.PubMedGoogle Scholar
  92. 92.
    Romanowska, E. (1964): Reactions of M and N blood-group substances natural and degraded with specific reagents of human and plant origin. Vox Sang. 9, 578–588.PubMedCrossRefGoogle Scholar
  93. 93.
    Roxby, D. J., Morley, A. A. & Burpee, M. (1987): Detection of the Tn antigen in leukaemia using monoclonal anti-Tn antibody and immunohistochemistry. Brit. J. Haematol. 67, 153–156.CrossRefGoogle Scholar
  94. 94.
    Sastry, M. V. K., Banarjee, P., Patanjali, S. R., Swamy, M. J., Swarnalatha, G. V. & Suroua, A. (1986): Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1→3)D-GalNAc). J. Biol. Chem. 261, 11726–11733.PubMedGoogle Scholar
  95. 95.
    Seitz, R., Fischer, K. & Poschmann, A. (1983): Differentiation of red cell membrane abnormalities causing T-polyagglutination by use of monoclonal antibodies. Rev. Fr. Transfus. Immunohematol. 26, 420.Google Scholar
  96. 96.
    Sharma, V., Vijayan, M. & Surolia, A. (1996): Imparting exquisite specificity to peanut agglutinin for the tumor-associated Thomsen-Friedenreich antigen by redesign of its combining site. J. Biol. Chem. 271, 21209–21213.PubMedCrossRefGoogle Scholar
  97. 97.
    Sondag-Thull, D., Levene, N. A., Levene, C., Manny, N., Liew, Y. W., Bird, G. W. G., Schechter, Y., François-Gérard, C., Huet, M. & Blanchard, D. (1989): Characterization of a neuraminidase from Corynebacterium aquaticum responsible for Th polyagglutination. Vox Sang. 57, 193–198.PubMedCrossRefGoogle Scholar
  98. 98.
    Springer, G. F. (1984): T and Tn, general carcinoma autoantigens. Science 224, 1198–1206.PubMedCrossRefGoogle Scholar
  99. 99.
    Springer, G. F., Chandrasekaran, E. V., Desai, P. R. & Tegtmeyer, H. (1988): Blood group Tn-active macromolecules from human carcinomas and erythrocytes: characterization of and specific reactivity with mono-and poly-clonal anti-Tn antibodies induced by various immunogens. Carbohydr. Res. 178, 271–292.PubMedCrossRefGoogle Scholar
  100. 100.
    Springer, G. F. & Desai, P. R. (1974): Common precursors of human blood group MN specificities. Biochem. Biophys. Res. Commun. 61, 470–475.PubMedCrossRefGoogle Scholar
  101. 101.
    Springer, G. F. & Desai, P. R. (1976): Enzymatic synthesis of human blood group M-, N-, and T-specific structures. Naturwissenschaften 63, 488–489.PubMedCrossRefGoogle Scholar
  102. 102.
    Sturgeon, P., Luner, S. J. & Mcquiston, D. T. (1973): Permanent mixed-field polyagglutinability (PMFP): II. Haematological, biophysical, and biochemical observations. Vox Sang. 25, 498–512.PubMedCrossRefGoogle Scholar
  103. 103.
    Sturgeon, P., Mcquiston, D. T., Taswell, H. F. & Allan, C. J. (1973): Permanent mixed-field polyagglutinability (PMFP): I. Serological observations. Vox Sang. 25, 481–497.PubMedCrossRefGoogle Scholar
  104. 104.
    Takahashi, H. K., Metoki, R. & Hakomori, S. I. (1988): Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated ot-N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigen. Cancer Res. 48, 4361–4367.PubMedGoogle Scholar
  105. 105.
    Thomas, D. B. & Winzler, R. J. (1969): Structural studies on human erythrocyte glycoprotein. Alkali-labile oligosaccharides. J. Biol. Chem. 244, 5943–5946.PubMedGoogle Scholar
  106. 106.
    Thomsen, O. (1927): Ein vermehrungsfähiges Agens als Veränderer des iso-agglutinatorischen Verhaltens der roten Blutkörperchen, ein bisher unbekannter Fall der Fehlbestimmung. Z. Immun.-Forsch. 52, 85–107.Google Scholar
  107. 107.
    Thurnher, M., Rusconi, S. & Berger, E. G. (1993): Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J. Clin. Invest. 91, 2103–2110.PubMedCrossRefGoogle Scholar
  108. 108.
    Tollefsen, S. E. & Kornfeld, R. (1983): The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues α-linked to serine of threonine residues in cell surface glycoproteins. J. Biol. Chem. 258, 5172–5176.PubMedGoogle Scholar
  109. 109.
    Uhlenbruck, G., Pardoe, G. I. & Bird, G. W. G. (1969): On the specificity of lectins with a broad agglutination spectrum. II. Studies of the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogaea (ground-nut). Z Immun.-Forsch. 138, 423–433.Google Scholar
  110. 110.
    Vainchenker, W., Testa, U., Deschamps, J. F., Henri, A., Titeux, M., Breton-Gorius, J., Rochant, H., Lee, D. & Cartron, J. P. (1982): Clonal expression of Tn antigen in erythroid and granulocyte colonies and its application to determination of the clonality of the human megacaryocyte colony assay. J. Clin. Invest. 69, 1081–1091.PubMedCrossRefGoogle Scholar
  111. 111.
    Vainchenker, W., Vinci, G., Testa, U., Henri, A., Tabilio, A., Fache, M. P., Rochant, H. & Cartron, J. P. (1985): Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J. Clin. Invest. 75, 541–546.PubMedCrossRefGoogle Scholar
  112. 112.
    Vaith, P. & Uhlenbruck, G. (1978): The Thompson agglutination phenomenon: a discovery revisited 50 years later. Z. Immun.-Forsch. 154, 1–14.Google Scholar
  113. 113.
    Van Der Hart, M., Moes, M., VanLoghem, J. J., Enneking, J. H. J. & Leeksma, C. H. W. (1961): A second example of red cell polyagglutinability caused by the Tn antigen. Vox Sang. 6, 358–361.PubMedCrossRefGoogle Scholar
  114. 114.
    Veneziano, G., Rasore-Quartino, A. & Sansone, G. (1978): Th erythrocyte polyagglutination. Lancet II, 483.Google Scholar
  115. 115.
    Wahl, C. M., Herman, J. H., Shirey, R. S., Kickler, T. S. & Ness, P. M. (1989): Th activation of maternal and cord blood. Transfusion 29, 635–637.PubMedCrossRefGoogle Scholar
  116. 116.
    Weeden, A. R., Datta, N. & Mollison, P. L. (1960): Adsorption of bacteria on to red cells leading to positive antiglobulin reactions. Vox Sang. 5, 523–531.PubMedCrossRefGoogle Scholar
  117. 117.
    Werther, J. L., Rivera-Macmurray, S., Bruckner, H., Tatematsu, M. & Itzkowitz, S. H. (1994): Mucin-associated sialosyl-Tn antigen expression in gastric cancer correlates with an adverse outcome. Brit. J. Cancer 69, 613–616.PubMedCrossRefGoogle Scholar
  118. 118.
    Yang, E., Moore, B. P. L., Liew, Y. W. & Bird, G. W. G. (1986): Further observations on the Vicia cretica lectin. Transfusion 26, 306–307.PubMedCrossRefGoogle Scholar
  119. 119.
    Yang, E. K. L., Spence, L R., Harding, R. Y. & Moore, B. P. L. (1982): A “new” lectin for detection of T, Tn, and Th polyagglutination. Transfusion 22, 338–339.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Helmut Schenkel-Brunner
    • 1
  1. 1.Institut für Medizinische BiochemieUniversität WienViennaAustria

Personalised recommendations