Ab initio Study of Clusters and Nanotubes in Electric Fields

  • K. Tada
  • K. Watanabe
  • C. Ishii
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 12)


We have investigated the reactions of silicon-carbon mixed clusters, Si2C3 and Si3C2 and various carbon nanotubes to the applied electric fields by first-principles supercell calculations using the local density approximations and the pseudopotential plane wave method. We manipulated the mixed clusters theoretically with a high electric field. Linear (Si2C3) and plane (Si3C2) clusters bend in the direction of the field. The field-induced distortion is interpreted using the electronegativity of Si and C atoms. The local field enhancement at the tips of carbon nanotubes and the screening of the electric field inside the nanotubes are considerable for nanotubes with a small gap between the highest occupied band (HOB) and the lowest unoccupied band (LUB) in the electronic states. The result also suggests an important role of the localized states of conducting nanotubes with small electronic gaps in field emissions.


Carbon Nanotubes Electric Dipole External Electric Field Applied Electric Field Local Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Parsons, R.F. Bunshah, O.M. Stafsudd: Solid State Technol. 28, 133(1985)Google Scholar
  2. 2.
    H. Kuramochi, H. Uchida, Y. Kuwahara, K. Watanabe, M. Aono: Jpn. J.Appl. Phys. 36, L1343 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs,C. Dekker: Nature 386, 474 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Saito, S. Uemura, K. Hamaguchi: Jpn. J. Appl. Phys. 37, L346 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    A. Maiti, C.J. Brabec, C. Roland, J. Bernholc: Phys. Rev. B52, 14850 (1995)ADSGoogle Scholar
  6. 6.
    L. Lou, P. Nordlander, R.E. Smalley: Phys. Rev. B52, 1429 (1995)ADSGoogle Scholar
  7. 7.
    R. Car and M. Parrinello: Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Ceperley and B.J. Alder: Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Perdew and A. Zunger: Phys. Rev. B23, 5048 (1981)ADSGoogle Scholar
  10. 10.
    N. Troullier and J.L. Martins: Phys. Rev. B43, 1193 (1991)ADSGoogle Scholar
  11. 11.
    K. Kobayashi: To construct a database for norm-conserving pseudopotentials, Proc. CMSMD, 1996, p.96Google Scholar
  12. 12.
    N. Hamada, S. Sawada, A. Oshiyama: Phys. Rev. Lett. 68, 1579 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Appl. Phys. Lett.60, 2204 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    I. Nakajima, T. Kawai, K. Watanabe: Surf. Sci. 433–435, 868 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    J.-M. Bonard, T. Stöckli, F. Maier, W.A. de Heer, A. Châtelain, J.-P.Salvetat, L. Forró: Phys. Rev. Lett. 81, 1441 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • K. Tada
    • 1
  • K. Watanabe
    • 1
    • 2
    • 3
  • C. Ishii
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceScience University of TokyoShinjuku-ku, TokyoJapan
  2. 2.Frontier Research Center for Computational SciencesScience University of TokyoShinjuku-ku, TokyoJapan
  3. 3.Japan Science and Technology CorporationCRESTJapan

Personalised recommendations