Advertisement

Radiative Muon Capture on 3He

  • D. H. Wright
  • D. S. Armstrong
  • P. C. Bergbusch
  • M. Blecher
  • B. C. Doyle
  • T. P. Gorringe
  • P. Gumplinger
  • M. D. Hasinoff
  • J. A. Macdonald
  • J-M. Poutissou
  • R. Poutissou
  • C. M. Sigler
Part of the Few-Body Systems book series (FEWBODY, volume 12)

Abstract

The radiative muon capture process has been observed in 3He by detecting a high-energy photon in coincidence with the recoil triton. A cylindrical pair spectrometer and a scintillating liquid 3He target were used to detect the photon and triton, respectively. The resulting photon spectrum is compared to impulse approximation calculations both with and without meson exchange corrections. The calculations over-estimate the measured spectrum by 30% and 20%, respectively. The recoil energy spectrum indicates that only 11% of the total radiative capture rate goes to final states which include deuterons and protons, with the remainder of the rate going to a triton final state.

Keywords

Impulse Approximation Pulse Height Spectrum Muon Capture Breakup Mode Baryon Chiral Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. Adler and Y. Dothan: Phys. Rev. 151, 1267 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    L. Wolfenstein: High-Energy Physics and Nuclear Structure, edited by S. Devons,p.661. New York: Plenum 1970CrossRefGoogle Scholar
  3. 3.
    V. Bernard, N. Kaiser, Ulf-G. Meissner: Phys. Rev. D50, 6899 (1994)ADSGoogle Scholar
  4. 4.
    G. Jonkmans et al.: Phys. Rev. Lett. 77, 4512 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Wright et al.: Phys. Rev. C57, 373 (1998)ADSGoogle Scholar
  6. 6.
    L. Klieb and H.P.C Rood: Phys. Rev. C29, 223 (1984)ADSGoogle Scholar
  7. 7.
    D.H. Wright et al.: Nucl. Instrum. Methods Phys. Res. A320, 249 (1992)ADSGoogle Scholar
  8. 8.
    D.A. Bryman et al.: Nucl. Instrum. Methods Phys. Res. A396, 394 (1997)ADSGoogle Scholar
  9. 9.
    F. Corriveau, M.D. Hasinoff, D.F. Measday, J.-M. Poutissou, M. Salomon: Nucl. Phys. A473, 747 (1987)ADSGoogle Scholar
  10. 10.
    J.G. Congleton and E. Truhlik: Phys. Rev. C53, 956 (1996)ADSGoogle Scholar
  11. 11.
    P. Ackerbauer et al.: Phys. Lett. B417, 224 (1998)ADSGoogle Scholar
  12. 12.
    A.C. Phillips and F. Roig: Nucl. Phys. A234, 378 (1974)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • D. H. Wright
    • 1
  • D. S. Armstrong
    • 2
  • P. C. Bergbusch
    • 3
  • M. Blecher
    • 4
  • B. C. Doyle
    • 5
  • T. P. Gorringe
    • 5
  • P. Gumplinger
    • 1
  • M. D. Hasinoff
    • 3
  • J. A. Macdonald
    • 1
  • J-M. Poutissou
    • 1
  • R. Poutissou
    • 1
  • C. M. Sigler
    • 4
  1. 1.TRIUMFVancouverCanada
  2. 2.College of William and MaryWilliamsburgUSA
  3. 3.University of British ColumbiaVancouverCanada
  4. 4.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.University of KentuckyLexingtonUSA

Personalised recommendations