Advertisement

Continuum Level Density in the Microscopic Cluster Model

  • K. Arai
  • A. T. Kruppa
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 12)

Abstract

Positions and widths of nuclear resonance states of the nucleus 8Be have been calculated in the microscopic cluster model using real square integrable basis. The imposition of Gamow or scattering asymptotic boundary condition onto the wave function is avoided. The continuum level density smoothed by the Strutinsky averaging procedure is calculated by making use of the eigenvalues of the full and the free Hamiltonian matrices. The continuum level density is connected to the S-matrix and has a Breit-Wigner peak around the resonance energy. This approach is compared with the complex scaling method and with the scattering phase shift calculation.

Keywords

Resonance Energy Resonance Parameter Integrable Basis Scatter Phase Shift Asymptotic Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.U. Hazi, H.S. Taylor: Phys. Rev. Al, 1109 (1970)ADSGoogle Scholar
  2. 2.
    V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor: Phys. Rev. Lett. 70, 1932 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Y.K. Ho: Phys. Rep. 99, 1 (1993)ADSCrossRefGoogle Scholar
  4. N. Moiseyev: Phys. Rep. 302, 211 (1998)ADSCrossRefGoogle Scholar
  5. 4.
    A.T. Kruppa, R.G. Lovas, B. Gyarmati: Phys. Rev. C37, 383 (1988)ADSGoogle Scholar
  6. 5.
    A.T. Kruppa and K. Arai: Phys. Rev. A59, 3556 (1999)ADSGoogle Scholar
  7. 6.
    K. Arai and A.T. Kruppa: Phys. Rev. C (in print)Google Scholar
  8. 7.
    V. M. Strutinsky: Nucl. Phys. A95, 420 (1967)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • K. Arai
    • 1
  • A. T. Kruppa
    • 2
  1. 1.Department of PhysicsNiigata UniversityNiigataJapan
  2. 2.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations