Coulomb Dissociation of Unstable Nuclei — An Application of Breakup Process to Astrophysics —

  • T. Motobayashi
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 12)


The Coulomb dissociation method has been developed recently to investigate radiative capture processes of astrophysical interest. Its high experimental efficiency enables one to study the systems involving unstable nuclei, which are now available as beams but with relatively weak intensities. We made a series of experiments at RIKEN including the breakup of 14O and 8B.


Virtual Photon Unstable Nucleus Solar Neutrino Problem Radioactive Nuclear Beam Coulomb Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Baur, C.A. Bertulani, H. Rebel: Nucl. Phys.A458, 188 (1986)ADSGoogle Scholar
  2. 2.
    G. Baur and H. Rebel: J. Phys.G20, 1 (1994)ADSGoogle Scholar
  3. Ann. Rev. Nucl. and Part.Sci.46, 321 (1996)ADSCrossRefGoogle Scholar
  4. 3.
    A.C. Shotter, V. Rapp, T. Davinson, D. Brandord, N.E. Sanderson,N.A. Nagarajan: Phys. Rev. Lett. 53, 1539 (1984)ADSCrossRefGoogle Scholar
  5. A.C. Shotter, V. Rapp,T. Davinson, D. Brandord: J. Phys.G14, L169 (1988)ADSGoogle Scholar
  6. 4.
    H. Utsunomiya et al.: Phys. Lett.B211, 24 (1988)ADSGoogle Scholar
  7. Nucl. Phys.A511, 379 (1990)ADSGoogle Scholar
  8. Phys. Rev. Lett65, 847 (1990)ADSCrossRefGoogle Scholar
  9. 5.
    J. Hesselbarth, S. Khan, Th. Kim, K.T. Knöpfle: Z. Phys.A331, 365 (1988)ADSGoogle Scholar
  10. J. Hesselbarth and K.T. Knöpfle: Phys. Rev. Lett.67, 2773 (1991)ADSCrossRefGoogle Scholar
  11. J. Hesselbarth, S. Khan, Th. Kim, K.T. Knöpfle: Z. Phys.A331, 365 (1988)ADSGoogle Scholar
  12. 6.
    S.B. Gazes, J.E. Mason, R.B. Roberts, S.G. Teichmann: Phys. Rev. Lett. 68, 150 (1992)ADSCrossRefGoogle Scholar
  13. J.E. Mason, S.B. Gazes, R.B. Roberts, S.G. Teichmann:Phys. Rev.C45, 2870 (1992)ADSGoogle Scholar
  14. 7.
    T. Motobayashi et al.: Phys. Lett.B264, 259 (1991)ADSGoogle Scholar
  15. 8.
    T. Kubo et al.: Nucl. Instr. Meth.B70, 309 (1992)ADSGoogle Scholar
  16. 9.
    F. Merchez et al.: Nucl. Instr. Meth.A275, 133 (1989)ADSGoogle Scholar
  17. 10.
    P. Decrock et al.: Phys. Rev. Lett. 67, 808 (1991)ADSCrossRefGoogle Scholar
  18. Th. Delbar et al: Phys.Rev.C48, 3088 (1993)ADSGoogle Scholar
  19. 11.
    J. Kiener et al.: Nucl. Phys.A552, 66 (1993)ADSGoogle Scholar
  20. 12.
    T. Motobayashi et al.: Phys. Rev. Lett.73, 2680 (1994)ADSCrossRefGoogle Scholar
  21. 13.
    N. Iwasa et al.: J. Phys. Soc. Jpn.65, 1256 (1996)ADSCrossRefGoogle Scholar
  22. 14.
    T. Kikuchi et al.: Phys. Lett.B391, 261 (1997)ADSGoogle Scholar
  23. 15.
    T. Kikuchi et al: Eur. Phys. J.A3, 209 (1998)ADSGoogle Scholar
  24. 16.
    T. Nishio et al.: RIKEN Accel. Prog. Rep.29, 184 (1996)Google Scholar
  25. 17.
    B. Filippone, S.J. Elwyn, C.N. Davids, D.D. Koetke: Phys. Rev. Lett. 50,412 (1983)ADSCrossRefGoogle Scholar
  26. B. Filippone, S.J. Elwyn, C.N. Davids, D.D. Koetke: Phys. Rev.C28, 2222 (1983)ADSGoogle Scholar
  27. 18.
    F.J. Vaughn, RA. Chalmers, D. Kohler, L.F. Chase, Jr.: Phys. Rev.C2,1657 (1970)ADSGoogle Scholar
  28. 19.
    B. Davids et al.: Phys. Rev. Lett.81, 2209 (1988)ADSCrossRefGoogle Scholar
  29. 20.
    CA. Bertulani: Phys. Rev.C49, 2688 (1994)ADSGoogle Scholar
  30. 21.
    S. Typel and G. Baur: Phys. Rev.C50, 2104 (1994)ADSGoogle Scholar
  31. 22.
    N. Iwasa et al.: Phys. Rev. Lett.83, 2910 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • T. Motobayashi
    • 1
  1. 1.Department of PhysicsRikkyo UniversityNishi-Ikebukuro, Toshima, TokyoJapan

Personalised recommendations