The motor circuit of the human basal ganglia reconsidered

  • P. Foley
  • P. Riederer
Conference paper


The standard model of human basal ganglia organization was introduced in the 1980s on the basis of animal experiments and clinical experience of various human motor disorders. This paper reviews evidence from various sources which suggests that this standard model only incompletely accounts for aspects of basal ganglia function, and thus requires modification.


Basal Ganglion Subthalamic Nucleus Motor Circuit Basal Ganglion Function MPTP Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin R.L., Young A.B., Penney J.B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–376PubMedCrossRefGoogle Scholar
  2. Baron M.S., Vitek J.L., Bakay R.A.E., Green J, Kanecke Y, Hashimoto T, Turner R.S., Woodard J.L., McDonald W.M., DeLong M.R. (1996) Treatment of advanced Parkinson’s disease by GPi pallidotomy: 1 year pilot study results. Ann Neurol 40:355–366PubMedCrossRefGoogle Scholar
  3. Baronti F, Mouradian M, Davis T.L., Guiffa M, Brughitta G, Conant K.E., Chase T.N. (1992) Lisuride effects on central dopaminergic mechanisms in Parkinson’s disease. Ann Neurol 32: 776–781PubMedCrossRefGoogle Scholar
  4. Benabid A.L., Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62: 76–84PubMedCrossRefGoogle Scholar
  5. Bergman H, Wichmann T, DeLong M.R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438PubMedCrossRefGoogle Scholar
  6. Bernard V, Gardiol A, Faucheux B, Bloch B, Agid Y, Hirsch E.C. (1996) Expression of glutamate receptors in the human and rat basal ganglia. Effect of the dopaminergic denervation on AMP A receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 368: 553–568PubMedCrossRefGoogle Scholar
  7. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlates. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  8. Blanchet P.J., Boucher R, Bedard P.J. (1994) Excitotoxic lateral pallidotomy does not relieve L-dopa-induced dyskinesia in MPTP parkinsonian monkeys. Brain Res 650:32–39PubMedCrossRefGoogle Scholar
  9. Blandini F, Greenamyre J.T. (1995) Effect of subthalamic nucleus lesion on mitochondrial enzyme activity in rat basal ganglia. Brain Res 669: 59–66PubMedCrossRefGoogle Scholar
  10. Carlsson M, Carlsson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75: 221–226PubMedCrossRefGoogle Scholar
  11. Chase T.N., Engber T.M., Mouradian M.M. (1996) Contribution of dopaminergic and glutamatergic mechanisms to the pathogenesis of motor response complications in Parkinson’s disease. Adv Neurol 69: 497–501PubMedGoogle Scholar
  12. Chesselet M.F., Delfs J.M. (1996) Basal ganglia and movement disorders: an update. Trends Neurosci 19: 417–422PubMedGoogle Scholar
  13. Danielczyk W (1973) Die Behandlung von akinetischen Krisen. Med Welt 24: 1278–1282PubMedGoogle Scholar
  14. Féger J (1996) Letter: Updating the functional model of the basal ganglia. Trends Neurosci 20: 152–153CrossRefGoogle Scholar
  15. Fici G.J., von Voigtlander P.F., Sethy V.H. (1997) DJ dopamine receptor activity of antiparkinsonian drugs. Life Sci 60: 1597–1603PubMedCrossRefGoogle Scholar
  16. Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 178: 425–441CrossRefGoogle Scholar
  17. Gerfen C.R., Engber T.M., Mahan L.C., Zvi S, Chase T.W., Monsma F.J., Sibley D.R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429–1432PubMedCrossRefGoogle Scholar
  18. Gerlach M, Gsell W, Kornhuber J, Jellinger K, Krieger V, Pantucek F, Vock R, Riederer P (1996) A post mortem study on neurochemical markers of dopaminergic, GABAergic and glutamatergic neurons in basal ganglia-thalamo-cortical circuits in Parkinson syndrome. Brain Res 741: 142–152PubMedCrossRefGoogle Scholar
  19. Hassani O.K., Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after nigral dopamine lesion independent of disinhibition by the globus pallidus. Neurosci 72: 105–115CrossRefGoogle Scholar
  20. Herrero M.T., Augood S.J., Hirsch E.C., Javoy-Agid F, Luquin M.R., Agid Y, Obeso J.A., Emson P.C. (1995) Effects of L-dopa on preproenkephalin and preprotachykinin gene expression in the MPTP-treated monkey striatum. Neurosci 68: 1189–1198CrossRefGoogle Scholar
  21. Herrero M.T., Levy R, Ruberg M, Luquin M.R., Villares J, Guillen J, Faucheux B, Javoy-Agid F, Guridi J, Agid Y, Obeso J.A., Hirsch E.C. (1996a) Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology 47: 219–224PubMedCrossRefGoogle Scholar
  22. Herrero M.T., Levy R, Ruberg M, Javoy-Agid F, Luquin M.R., Agid Y, Hirsch EC, Obeso J.A. (1996b) Glutamic acid decarboxylase mRNA expression in medial and lateral pallidal neurons in the MPTP-treated monkey and patients with Parkinson’s disease. Adv Neurol 69: 209–216PubMedGoogle Scholar
  23. Kincaid A.E., Penney J.B., Young A.B., Newman S.W. (1991) The globus pallidus receives a projection from the parafascicular nucleus in the rat. Brain Res 553: 18–26PubMedCrossRefGoogle Scholar
  24. Krack P, Limousin P, Benabid A.L., Pollak P (1997) Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson’s disease. Lancet 350:1676PubMedCrossRefGoogle Scholar
  25. Lange K.W., Kornhuber J, Riederer P (1997) Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 21: 393–400PubMedCrossRefGoogle Scholar
  26. Lees A.J., Stern G.M. (1981) Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 44: 1020–1023PubMedCrossRefGoogle Scholar
  27. Levy R, Herrero M.T., Ruberg M, Villares J, Faucheux B, Guridi J, Guillen J, Luquin M.R., Javoy-Agid F, Obeso J.A., Agid Y, Hirsch E.C. (1995a) Effects of nigrostriatal denervation and L-dopa therapy on the GABAergic neurons of the striatum in MPTP-treated monkeys and Parkinson’s disease: an in situ hybridization study of GAD67 mRNA. Eur J Neurosci 7: 1199–1209PubMedCrossRefGoogle Scholar
  28. Levy R, Ruberg M, Herrero M.T., Villares J, Javoy-Agid F, Agid Y, Hirsch E.C. (1995b) Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy: an in situ hybridization study of GAD67 messenger RNA. Neurology 45: 127–134PubMedCrossRefGoogle Scholar
  29. Levy R, Vila M, Herrero M.T., Faucheux B, Agid Y, Hirsch E.C. (1995c) Striatal expression of substance P and methionin-enkephalin genes in patients with Parkinson’s disease. Neurosci Lett 199: 220–224PubMedCrossRefGoogle Scholar
  30. Levy R, Hazrati L.N., Herrero M.T., Vila M, Hassani O.K., Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso J.A., Parent A, Hirsch E.C. (1997) Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian states. Neuroscience 76: 335–343PubMedCrossRefGoogle Scholar
  31. Lieberman A.N., Goldstein M, Leibowitz M, Gopinatham G, Neophytide A, Hiesiger E, Nelson J, Walker R (1984) Long term treatment with pergolide: decreased efficacy with time. Neurology 34: 223–226PubMedCrossRefGoogle Scholar
  32. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas J.F., Broussolle E, Perrett J.E., Benabid A.L. (1995) Effects on parkinsonian signs and symptoms of bilateral subthalamic stimulation. Lancet 345: 91–95PubMedCrossRefGoogle Scholar
  33. Marsden C.D., Obeso J.A. (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117: 887–897CrossRefGoogle Scholar
  34. Metman L.V., Del Dotto P, van den Munckhof P, Fang J, Mouradian M.M., Chase T.N. (1998a) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50: 1232–1326Google Scholar
  35. Metman L.V., Del Dotto P, Blanchet P.J., van den Munckhof P, Chase T.N. (1998b) Blockade of glutamatergic transmission as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Amino Acids 14: 75–82CrossRefGoogle Scholar
  36. Miller W.C., DeLong M.R. (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter M.B., Jayaraman A (eds) The basal ganglia II. Structure and function: current concepts. Plenum Press, New York, pp 415–427Google Scholar
  37. Mitchell I.J., Clarke C.E., Boyce S, Robertson R.G., Peggs D, Sambrook M.A., Crossman A.R. (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyL-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci 32: 213–226CrossRefGoogle Scholar
  38. Müller W.E., Mutschler E, Riederer P (1995) Noncompetitive NMDA receptor antagonists with fast open-channel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer’s dementia. Pharmacopsychiatry 28: 113–124PubMedCrossRefGoogle Scholar
  39. Page R.D., Sambrook M.A., Crossman A.R. (1993) Thalamotomy for the alleviation of levodopa-induced dyskinesia: experimental studies in the 1-methyl-4-phenyl-1,2,3,6-dihydropyridine-treated parkinsonian monkey. Neurosci 55: 147–165CrossRefGoogle Scholar
  40. Palacios J.M., Camps M, Cortes P, Probst A (1998) Mapping dopamine receptors in the human brain. J Neural Transm [Suppl] 27: 227–235Google Scholar
  41. Parent A, Cicchetti F (1998) The current model of basal ganglia organization under scrutiny. Mov Disord 13: 199–202PubMedCrossRefGoogle Scholar
  42. Parent A, Hazrati L.N. (1995) Functional anatomy of the basal ganglia. I The cortico-basal ganglia-thalamo-corticalloop. Brain Res Rev 20: 91–127PubMedCrossRefGoogle Scholar
  43. Parsons C.G., Panchenko V.A., Pinchenko V.O., Tsyndrenko A.Y., Krishtal O.A. (1996) Comparative patch-clamp study with freshly dissociated rat hippocampal and striatal neurons: antagonistic effects on the NMDA receptor of amantadine and memantine. Eur J Neurosci 8: 446–454PubMedCrossRefGoogle Scholar
  44. Pearce R.K.B., Banerji T, Jenner P, Marsden C.D. (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTPtreated marmoset. Mov Disord 13: 234–241PubMedCrossRefGoogle Scholar
  45. Pinter M.M., Alesch F, Murg M, Seiwald M, Helscher R.J., Binder H (1999) Deep brain stimulation of the subthalamic nucleus for control of extrapyramidal features in advanced Parkinson’s disease: one year follow-up. J Neural Transm 106: 693–709PubMedCrossRefGoogle Scholar
  46. Porter R.H.P., Greene J.G., Higgins D.S., Greenamyre J.T. (1994) Polysnaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion. J Neurosci 14: 7192–7199PubMedGoogle Scholar
  47. Rascol O, Blin O, Descombes S, Soubrouilliard C, Fabre N, Viallet F, Thalamas C, Azulay J.P., Lafnitzegger K, Fredrick E, Wright S, Nutt J (1997) ABT-431, a selective D1 agonist, has efficacy in patients with Parkinson’s disease (abstract). Neurology 48:32004Google Scholar
  48. Sadikot A.F., Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315: 137–159PubMedCrossRefGoogle Scholar
  49. Sellal F, Hirsch E, Lisovoski F, Mutschler V, Collard M, Marasceux C (1992) Contralateral disappearance of parkinsonian signs after subthalamic hematoma. Neurology 42:255–256PubMedCrossRefGoogle Scholar
  50. Shiosaki K, Jenner P, Asin K.E., Britton D.R., Lin C.W., Michaelides M, Smith L, Bianchi B, Didomenico S, Hodges L, Hong Y.F., Mahan L, Mikusa J, Miller T, Nikkel A, Stashko M, Witte D, Williams M (1996) ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D-1 receptor agonist. In vitro characterization and effects in animal models of Parkinson’s disease. J Pharmacol Exp Ther 276: 150–160PubMedGoogle Scholar
  51. Starr M.S. (1995) Glutamate/dopamine DlID2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 19: 264–293PubMedCrossRefGoogle Scholar
  52. Tel B.C., Zeng B.Y., Pearce R.K.B., Rose S, Jenner P, Marsden C.D. (1999) Changes in striatal preproenkephalin (PPE-A) and preprotachykinin (PPT) mRNA expression: the effects of L-dopa, bromocriptine and ropinirole in MPTP-treated marmosets (Abstract).Google Scholar
  53. Vernier P, Julien J.F., Rataboul P, Fourrier O, Feuerstein C, Mallet J (1988) Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. J Neurochem 51: 1375–1380PubMedCrossRefGoogle Scholar
  54. Vila M, Levy R, Herrero M.T., Faucheux B, Obeso J.A., Agid Y, Hirsch E.C. (1996) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neurosci 71: 903–912CrossRefGoogle Scholar
  55. Vila M, Levy R, Herrero M.T., Ruberg M, Faucheux B, Obeso J.A., Agid Y, Hirsch E.C. (1997) Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17: 765–773PubMedGoogle Scholar
  56. Wichmann T, DeLong M.R. (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6: 751–758PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • P. Foley
    • 1
  • P. Riederer
    • 1
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgWürzburgFederal Republic of Germany

Personalised recommendations