Role of anti-apoptotic Bcl-2 protein in spinal muscular atrophy

  • Y. Tsujimoto
Conference paper


Apoptosis is an essential physiological cell death for selective elimination of cells, involved in a variety of biological events including morphogenesis, cell turn over and removal of harmful cells. Disruption of the regulation of apoptosis may result in various diseases, including cancer and autoimmune diseases both associated with inhibition of apoptosis and various degenerative disorders associated with enhancement of apoptosis, and therefore, apoptosis is an improtant theme in the medical field. Apoptosis is driven by a family of cysteine proteases, called caspases and regulated by a Bcl-2 family of proteins, which is the best characterized apoptosis regulators. The Bcl-2 family consists of anti-apoptotic and pro-apoptotic members, and some members are implicated in cancer and nuronal diseases.

Here, I overview the mechanism of how Bcl-2 family proteins regulate cell death, and how they are implicated in human diseases, particularly focusing on role of Bcl-2 in spinal muscular atropy.


Spinal Muscular Atrophy Spinal Muscular Atrophy Patient Survival Motor Neuron Gene Facial Motor Neuron Neuronal Apoptosis Inhibitory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe-Dohmae S, Harada N, Yamada K, Tanaka R (1993) bcl-2 gene is highly expressed during neurogenesis in the central nervous system. Biochem Biophys Res Comm 191: 915–921PubMedCrossRefGoogle Scholar
  2. Adams J.M., Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326PubMedCrossRefGoogle Scholar
  3. Bakhshi A, Jensen J.P., Goldman P, Wright J.J., McBride O.W., Epstein A.L., Korsmeyer S.J. (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41: 899–906PubMedCrossRefGoogle Scholar
  4. Cenni M.C., Bonfant L, Martinou J-C, Ratto G.M., Strettoi E, Maffei L (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur J Nuerosci 8: 1735–1745CrossRefGoogle Scholar
  5. Cleary M.L., Sklar J (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82: 7439–7443PubMedCrossRefGoogle Scholar
  6. Conradt B, Horvitz H.R. (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93: 519–529PubMedCrossRefGoogle Scholar
  7. Deckwerth T.L., Elliott J.L., Knudson C.M., Johnson Jr, E.M., Snider W.D., Korsmeyer S.J. (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Nueron 17: 401–411CrossRefGoogle Scholar
  8. Gillardon F, Wickert H, Zimmermann M (1995) Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett 192: 85–88PubMedCrossRefGoogle Scholar
  9. Green D.R., Reed J.C. (1998) Mitochondria and apoptosis. Science 281: 1309–1312PubMedCrossRefGoogle Scholar
  10. Hara A, Iwai T, Niwa M, Uematsu T, Yoshimi N, Tanaka T, Mori H (1996) Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res 711: 249–253PubMedCrossRefGoogle Scholar
  11. Hengartner M.O. (1997) CED-4 is a stranger no more. Science 388: 714–715Google Scholar
  12. Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (1997) Synergy between Bcl-2 and SMN, a protein implicated in spinal muscular atrophy. Nature 390: 413–417PubMedCrossRefGoogle Scholar
  13. Jurgensmeier J.M., Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed J.C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95: 4997–5002PubMedCrossRefGoogle Scholar
  14. Kerr J.F., Wyllie A.H., Currie A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  15. Knudson C.M., Korsmeyer S.J. (1997) Bcl-2 and Bax function independently to regulate cell death. Nature Genet 16: 358–363PubMedCrossRefGoogle Scholar
  16. Krajewski S, Mai J.K., Krajewska M, Sikorska M, Mossakowski M.J., Reed J.C. (1995) Upregulation of Bax levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376PubMedGoogle Scholar
  17. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642PubMedCrossRefGoogle Scholar
  18. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Paslier D.L., Frezal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155–165PubMedCrossRefGoogle Scholar
  19. Li P, Nijhawan D, Budihardjo I, Srinivasula S.M., Ahmad M, Alnemri ES, Wang X (1997) Cytochorme c and dATP-dependent formation of Apaf-llcaspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489PubMedCrossRefGoogle Scholar
  20. Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90: 1013–1021PubMedCrossRefGoogle Scholar
  21. Liu X, Kim C.N., Yang J, Jemmerson R, Wang Z (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157PubMedCrossRefGoogle Scholar
  22. Liston P, Rpy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda J-E, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353PubMedCrossRefGoogle Scholar
  23. Martinou J-C, Dubois-Dauphin M, Staple J.K., Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occuring cell death and experimental ischemia. Neuron 13: 1017–1030PubMedCrossRefGoogle Scholar
  24. Marzo I, Brenner C, Zamzami N, Jurgensmeier J.M., Susin S.A., Vieira H.L., Prevost M.C., Xie Z, Matsuyama S, Reed J.C., Kroemer G (1998) Bax and adenine nueleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031PubMedCrossRefGoogle Scholar
  25. Merry D.E., Veis D.J., Hickey W.F., Korsmeyer S.J. (1994) bcl-2 protein expression is wide-spread in the developing nervous system and retained in the adult PNS. Dev 120: 301–311Google Scholar
  26. Michaelidis T.M., Sendtner M, Cooper J.D., Airaksinen M.S., Holtmann B, Meyer M, Thoenen H (1996) Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17: 75–89PubMedCrossRefGoogle Scholar
  27. Minn A.J., Velez P, Schendel S.L., Liang H, Muchmore S.W., Fesik S.W., Fill M, Thompson C.B. (1997) Bcl-xL forms as ion channel in synthetic lipid membranes. Nature 385:353–357PubMedCrossRefGoogle Scholar
  28. Muchmore S.W., Sattler M, Liang H, Meadows R.P., Harlan J.E., Yoon H.S., Nettesheim D, Chang B.S., Thompson C.B., Wong S.L., Ng S.L., Fesik S.W. (1996) X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381: 335–341PubMedCrossRefGoogle Scholar
  29. Narita M, Shimizu S, Ito T, Chittenden T, Lutz R.J., Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95: 14681–14686PubMedCrossRefGoogle Scholar
  30. Nunez G, London L, Hockenbery D, Alexander M, McKearn J.P., Korsmeyer S.J. (1990) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 144: 3602–3610PubMedGoogle Scholar
  31. Oltvai A.N., Milliman C.L., Korsmeyer S.J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619PubMedCrossRefGoogle Scholar
  32. Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95: 615–624PubMedCrossRefGoogle Scholar
  33. Reed J.C. (1997) Double identity for proteins of the Bcl-2 family. Nature 387: 773–776PubMedCrossRefGoogle Scholar
  34. Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, Salih M, Aubry H, Tarnai K, Guan X, Ioannou P, Crawford T.O., Jong P.J.D., Surh L, Ikeda J-E, Korneluk R.G., d MacKenzie A (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178PubMedCrossRefGoogle Scholar
  35. Schrank B, Gotz R, Gunnersen J.M., Ure J.M., Toyka K.V., Smith A.G., Sendtner M (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94: 9920–9925PubMedCrossRefGoogle Scholar
  36. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95: 1455–1459PubMedCrossRefGoogle Scholar
  37. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487PubMedCrossRefGoogle Scholar
  38. Tanabe H, Eguchi Y, Kamada S, Martinou J-C, Tsujimoto Y (1997) Susceptibility of cerebellar granule neurons derived from bcl-2-deficient and transgenic mice to cell death. Eur J Neurosci 9: 848–856PubMedCrossRefGoogle Scholar
  39. Thornberry N.A., Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316PubMedCrossRefGoogle Scholar
  40. Tsujimoto Y (1989) Stress-resistance conferred by high level of bcl-2a protein in humna B lymphoblastoid cell. Oncogene 4: 1331–1336PubMedGoogle Scholar
  41. Tsujimoto Y, Finger L.R., Yunis J, Nowell P.C., Croce C.M. (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097–109PubMedCrossRefGoogle Scholar
  42. Tsujimoto Y, Cossman J, Jaffe E, Croce C.M. (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443PubMedCrossRefGoogle Scholar
  43. Vander Heiden M.G., Chandel N.S., Williamson E.K., Schumacker P.T., Thompson C.B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637PubMedCrossRefGoogle Scholar
  44. Vaux D.L., Cory S, Adams J.M. (1988) bcl-2 gene promotes haematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442PubMedCrossRefGoogle Scholar
  45. Zou H, Henzel W.J., Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Y. Tsujimoto
    • 1
  1. 1.Department of Medical GeneticsOsaka University Medical School, Biomedical Research CenterSuita, OsakaJapan

Personalised recommendations