Dentatorubral-pallidoluysian atrophy (DRPLA)

  • S. Tsuji
Conference paper


Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder caused by expansion of CAG repeats coding for a polyglutamine stretch. The prominent anticipation and broad spectrum in the clinical presentations of DRPLA have been demonstrated to be tightly correlated with the instability of CAG repeats in the DRPLA gene. Discovery of the causative gene for DRPLA has made it possible to investigate molecular mechanisms of neurodegeneration caused by expanded polyglutamine stretches. Recent investigations suggest that nuclear transport of mutant proteins containing expanded polyglutamine stretches and intranuclear aggregate formation play important roles in neuronal degeneration. We have recently demonstrated that the aggregate formation and apoptosis are partially suppressed by trans glutaminase inhibitors, raising the possibility that trans glutaminase is involved in the aggregate body. The results may open new prospects for developing therapeutic measures for the polyglutamine diseases.


Spinocerebellar Ataxia Spinocerebellar Ataxia Type Polyglutamine Stretch Progressive Myoclonus Epilepsy Progressive Myoclonus Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akashi T, Ando S, Inose T et al (1987) Dentato-rubro-pallido-luysian atrophy: a clinicopathological study (in Japanese). Rinsho Seishin Igaku 29: 523–531Google Scholar
  2. Almqvist E, Spence N, Nichol K et al (1995) Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the geneticevolution of Huntington disease. Hum Mol Genet 4: 207–214PubMedCrossRefGoogle Scholar
  3. Andrew S.E., Goldberg Y.P., Kremer Bet al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4: 398–403PubMedCrossRefGoogle Scholar
  4. Bao J, Sharp A.H., Wagster M.Y. et al (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 93: 5037–5042PubMedCrossRefGoogle Scholar
  5. Boutell J.M., Wood J.D., Harper P.S. et al (1998) Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7: 371–378PubMedCrossRefGoogle Scholar
  6. Burke J.R., Wingfield M.S., Lewis K.E. et al (1994) The Haw River syndrome: Dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 7: 521–524PubMedCrossRefGoogle Scholar
  7. Burke J.R., Enghild J.J., Martin M.E. et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2: 347–350PubMedCrossRefGoogle Scholar
  8. Chong S.S., McCall A.E., Cota J et al (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCAI CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10: 344–350PubMedCrossRefGoogle Scholar
  9. Chung M.Y., Ranum L.P., Duvick L.A. et al (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nat Genet 5: 254–258PubMedCrossRefGoogle Scholar
  10. Connarty M, Dennis N.R., Patch C et al (1996) Molecular re-investigation of patients with Huntington’s disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy. Hum Genet 97: 76–78PubMedCrossRefGoogle Scholar
  11. Cooper J.K., Schilling G, Peters M.F. et al (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 7: 783–790PubMedCrossRefGoogle Scholar
  12. David G, Abbas N, Stevanin G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17: 65–70PubMedCrossRefGoogle Scholar
  13. David G, Durr A, Stevanin G et al (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7: 165–170PubMedCrossRefGoogle Scholar
  14. Davies S.W., Turmaine M, Cozens B.A. et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548PubMedCrossRefGoogle Scholar
  15. De Barsy T.H., Myle G, Troch C et al (1968) La Dyssynergie cerebelleuse myoclonique (R. Hunt): Affection autonomeou rariante du type degeneratif de l’epilepsie-myoclonie progressive (Unvericht-Lundborg) Appoche anatomo-alinique. J Neurol Sci 8: 111–127CrossRefGoogle Scholar
  16. Difiglia M, Sapp E, Chase K.O. et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993PubMedCrossRefGoogle Scholar
  17. Duyao M, Ambrose C, Myers R et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4: 387–392PubMedCrossRefGoogle Scholar
  18. Endo K, Sasaki H, Wakisaka A et al (1996) Strong linkage disequilibrium and haplotype analysis in Japanese pedigrees with Machado-Joseph disease. Am J Med Genet 67:437–444PubMedCrossRefGoogle Scholar
  19. Faber P.W., Barnes G.T., Srinidhi J et al (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7: 1463–1474PubMedCrossRefGoogle Scholar
  20. Farmer T.W., Wingfield M.S., Lynch S.A. et al (1989) Ataxia, chorea, seizures, and dementia. Pathologic features of a newly defined familial disorder. Arch Neurol 46: 774–779PubMedCrossRefGoogle Scholar
  21. Goldberg Y.P., Nicholson D.W., Rasper D.M. et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449PubMedCrossRefGoogle Scholar
  22. Gouw L.G., Castaneda M.A., McKenna C.K. et al (1998) Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 7: 525–532PubMedCrossRefGoogle Scholar
  23. Hashida H, Goto J, Kurisaki H et al (1997) Brain regional differences in the expansion of a CAG repeat in the spinocerebellar ataxias: dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, and spinocerebellar ataxia type 1. Ann Neurol 41: 505–511PubMedCrossRefGoogle Scholar
  24. Hayashi Y, Kakita A, Yamada M et al (1998) Hereditary dentatorubral-pallidoluysian atrophy - ubiquitinated filamentous inclusions in the cerebellar dentate nucleus neurons. Acta Neuropathol (Berl) 95: 479–482PubMedCrossRefGoogle Scholar
  25. Hirayama K, Iizuka R, Maehara K et al (1981) Clinicopathological study of dentatorubropallidoluysian atrophy, part 1. Its clinical form and analysis of symptomatology- (in Japanese). Adv Neurol 25: 725–736Google Scholar
  26. Hodgson J.G., Agopyan N, Gutekunst C.A. et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23: 181–192PubMedCrossRefGoogle Scholar
  27. Holmberg M, Duyckaerts C, Durr A et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913–918PubMedCrossRefGoogle Scholar
  28. Igarashi S, Koide R, Shimohata T et al (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18: 111–117PubMedCrossRefGoogle Scholar
  29. Iizuka R, Hirayama K (1986) Dentato-rubro-pallido-Iuysian atrophy. In: Vinken P.J., Bruyn G.W., Klawans H.L. (eds) Handbook of clinical neurology, vol 5. North-Holland, Amsterdam, pp 437–443Google Scholar
  30. Iizuka R, Hirayama K, Maehara K.A. (1984) Dentato-rubro-pallido-Iuysian atrophy: a clinico-pathological study. J Neurol Neurosurg Psychiatry 47: 1288–1298PubMedCrossRefGoogle Scholar
  31. Ikeda H, Yamaguchi M, Sugai S et al (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13: 196–202PubMedCrossRefGoogle Scholar
  32. Ikeuchi T, Koide R, Tanaka H et al (1995a) Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37: 769–775PubMedCrossRefGoogle Scholar
  33. Ikeuchi T, Onodera O, Oyake M et al (1995b) Dentatorubral-pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and prominent anticipation. Semin Cell BioI 6: 37–44CrossRefGoogle Scholar
  34. Ikeuchi T, Koide R, Onodera O et al (1995c) Dentatorubral-pallidoluysian atrophy (DRPLA). Molecular basis for wide clinical features of DRPLA. Clin Neurosci 3: 23–27PubMedGoogle Scholar
  35. Imbert G, Saudou F, Yvert G et al (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14: 285–291PubMedCrossRefGoogle Scholar
  36. Inazuki G, Kumagai K, Naito H (1990) Dentatorubral-pallidoluysian atrophy (DRPLA): its distribution in Japan and prevalence rate in Niigata. Seishin Igaku 32: 1135–1138Google Scholar
  37. Iwabuchi K (1987) Clinico-pathological studies ondentato-rubro-pallido-Iuysian atrophy (DRPLA). Yokohama Igaku 38: 291–301Google Scholar
  38. Iwabuchi K, Amano N, Yagishita S et al (1987) A clinicopathological study on familial cases of dentatorubro-pallidoluysian atrophy (DRPLA). Clin Neurol 27: 1002–1012Google Scholar
  39. Johansson J, Forsgren L, Sandgren O et al (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7: 171–176PubMedCrossRefGoogle Scholar
  40. Kahlem P, Terre C, Green H et al (1996) Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc Natl Acad Sci USA 93: 14580–14585PubMedCrossRefGoogle Scholar
  41. Kalchman MA, Graham RK, Xia G et al (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271: 19385–19394PubMedCrossRefGoogle Scholar
  42. Kalchman M.A., Koide H.B., Mccutcheon K et al (1997) HIP1, a human homologue of s-cerevisiae sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 16: 44–53PubMedCrossRefGoogle Scholar
  43. Kawakami H, Maruyama H, Nakamura S et al (1995) Unique features of the CAG repeats in Machado-Joseph disease. Nat Genet 9: 344–345PubMedCrossRefGoogle Scholar
  44. Kaytor M.D., Burright E.N., Duvick L.A. et al (1997) Increased trinucleotide repeat instability with advanced maternal age. Hum Mol Genet 6: 2135–2139PubMedCrossRefGoogle Scholar
  45. Klement I.A., Skinner P.J., Kaytor M.D. et al (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53PubMedCrossRefGoogle Scholar
  46. Koide R, Ikeuchi T, Onodera O et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6: 9–13PubMedCrossRefGoogle Scholar
  47. Koshy B, Matilla T, Burright E.N. et al (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3- phosphate dehydrogenase. Hum Mol Genet 5: 1311–1318PubMedCrossRefGoogle Scholar
  48. La Spada A.R., Wilson E.M., Lubahn D.B. et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79PubMedCrossRefGoogle Scholar
  49. La Spada A.R., Peterson K.R., Meadows S.A. et al (1998) Androgen receptor Y AC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet 7: 959–967PubMedCrossRefGoogle Scholar
  50. Li M, Miwa S, Kobayashi Y et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44: 249–254PubMedCrossRefGoogle Scholar
  51. Li X.J., Li S.H., Sharp A.H. et al (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378: 398–402PubMedCrossRefGoogle Scholar
  52. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506PubMedCrossRefGoogle Scholar
  53. Martindale D, Hackam A, Wieczorek A et al (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18: 150–154PubMedCrossRefGoogle Scholar
  54. Matilla A, Koshy B.T., Cummings C.J. et al (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389: 974–978PubMedCrossRefGoogle Scholar
  55. Miyashita T, Nagao K, Ohmi K et al (1998) Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun 249: 96–102PubMedCrossRefGoogle Scholar
  56. Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucl Acids Res 18: 5322PubMedCrossRefGoogle Scholar
  57. Nagafuchi S, Yanagisawa H, Ohsaki E et al (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8: 177–182PubMedCrossRefGoogle Scholar
  58. Nagafuchi S, Yanagisawa H, Sato K et al (1994) Expansion of an unstable CAG trinucleotide on chromosome 12p in dentatorubral and pallidoluysian atrophy. Nat Genet 6:14–18PubMedCrossRefGoogle Scholar
  59. Nagai Y, Onodera O, Chun J et al (1999) Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Exp Neurol 155: 195–203PubMedCrossRefGoogle Scholar
  60. Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32: 798–807PubMedCrossRefGoogle Scholar
  61. Naito N, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32: 789–817CrossRefGoogle Scholar
  62. Naito H, Izawa K, Kurosaki T et al (1972) Two families of progressive myoclonus epilepsy with Mendelian dominant heredity (in Japanese). Psychiatr Neurol Jpn 74:871–897Google Scholar
  63. Naito H, Ohama E, Nagai H et al (1987) A family of dentatorubropallidoluysian atrophy (DRPLA) including two cases with schizophrenic symptoms (in Japanese). Psychiatr Neurol Jpn 89: 144–158Google Scholar
  64. Nakai K, Kanehisa M.A. (1992) Knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911PubMedCrossRefGoogle Scholar
  65. Norremolle A, Nielsen J.E., Sorensen S.A. et al (1995) Elongated CAG repeats of the B37 gene in a Danish family with dentato-rubro-pallido-Iuysian atrophy. Hum Genet 95:313–318PubMedCrossRefGoogle Scholar
  66. Onodera O, Oyake M, Takano H et al (1995) Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 57: 1050–1060PubMedGoogle Scholar
  67. Onodera O, Burke J.R., Miller S.E. et al (1997) Oligomerization of expandedpolyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem Biophys Res Commun 238: 599–605PubMedCrossRefGoogle Scholar
  68. Orr H.T., Chung M.Y., Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4: 221–226PubMedCrossRefGoogle Scholar
  69. Oyanagi S, Naito H (1977) Aclinico-neuropathological study on four autopsy cases of degenerative type of myoclonus epilepsy with Mendelian dominant heredity (in Japanese). Psychiatr Neurol Jpn 79: 113–129Google Scholar
  70. Paulson H.L., Perez M.K., Trottier Y et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333–344PubMedCrossRefGoogle Scholar
  71. Perutz M.F. (1995) Glutamine repeats as polar zippers: their role in inherited neurodegenerative disease. Mol Med 1: 718–721PubMedGoogle Scholar
  72. Perutz M.F. (1996) Blood. Taking the pressure off [news]. Nature 380: 205–206PubMedCrossRefGoogle Scholar
  73. Perutz M.F., Johnson T, Suzuki M et al (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91: 5355–5358PubMedCrossRefGoogle Scholar
  74. Potter N.T. (1996) The relationship between (CAG)n repeat number and age of onset in a family with dentatorubral-pallidoluysian atrophy (DRPLA): diagnostic implications of confirmatory and predictive testing. J Med Genet 33: 168–170PubMedCrossRefGoogle Scholar
  75. Pulst S.M., Nechiporuk A, Nechiporuk T et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14: 269–276PubMedCrossRefGoogle Scholar
  76. Rubinsztein D.C., Leggo J (1997) Non-mendelian transmission at the Machado-Joseph disease locus in normal females: preferential transmission of alleles with smaller CAG repeats. J Med Genet 34: 234–236PubMedCrossRefGoogle Scholar
  77. Sanpei K, Takano H, Igarashi S et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14: 277–284PubMedCrossRefGoogle Scholar
  78. Sato A, Shimohata T, Koide R et al (1999) Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally differentiated PC12 Cells: preferential intranuclear aggregate formation and apoptosis. Hum Mol Genet 8: 997–1006PubMedCrossRefGoogle Scholar
  79. Sato T, Oyake M, Nakamura K et al (1999) Transgenic mice harboring a full-length human mutant DRPLA gene reveal CAG repeat instability. Hum Mol Genet 8: 99–106PubMedCrossRefGoogle Scholar
  80. Saudou F, Finkbeiner S, Devys D et al (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66Google Scholar
  81. Sittler A, Walter S, Wedemeyer N et al (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 2: 427–436PubMedCrossRefGoogle Scholar
  82. Skinner P.J., Koshy B.T., Cummings C.J. et al (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389: 971–974PubMedCrossRefGoogle Scholar
  83. Smith JK (1975) Dentatorubropallidoluysian atrophy. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 21. North-Holland, Amsterdam, pp 519–534Google Scholar
  84. Smith J.K., Gonda V.E., Malamud N (1958) Unusual form of cerebellar ataxia: combined dentato-rubral and pallido-Luysian degeneration. Neurology 8: 205–209PubMedCrossRefGoogle Scholar
  85. Snell R.G., MacMillan J.C., Cheadle J.P. et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397PubMedCrossRefGoogle Scholar
  86. Squitieri F, Andrew S.E., Goldberg Y.P. et al (1994) DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum Mol Genet 3: 2103–2114PubMedCrossRefGoogle Scholar
  87. Stevanin G, Cancel G, Didierjean O et al (1995) Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation. Am J Hum Genet 57: 1247–1250PubMedGoogle Scholar
  88. Suzuki S, Kamoshita S, Ninomura S (1985) Ramsay Hunt syndrome in dentatorubralpallidoluysian atrophy. Pediatr Neurol 1: 298–301PubMedCrossRefGoogle Scholar
  89. Takano H, Onodera O, Takahashi H et al (1996) Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: cellular population-dependent dynamics of mitotic instability. Am J Hum Genet 58: 1212–1222PubMedGoogle Scholar
  90. Takano T, Yamanouchi Y, Nagafuchi S et al (1996) Assignment ofthe dentatorubral and pallidoluysian atrophy (DRPLA) gene to 12p 13.31 by fluorescence in situ hybridization. Genomics 32: 171–172PubMedCrossRefGoogle Scholar
  91. Takiyama Y, Igarashi S, Rogaeva E.A. et al (1995) Evidence for inter-generational instability in the CAG repeat in the MJDl gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum Mol Genet 4: 1137–1146PubMedCrossRefGoogle Scholar
  92. Tanaka Y, Murobushi K, Ando S et al (1977) Combined degeneration of the globus pallidus and the cerebellar nuclei and their efferent systems in two siblings of one family: primary system degeneration of the globus palliclus and the cerebellar nuclei (in Japanese). Brain and Nerve 29: 95–104PubMedGoogle Scholar
  93. Telenius H, Kremer B, Goldberg Y.P. et al (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 6: 409–414PubMedCrossRefGoogle Scholar
  94. The Huntington’s disease collaborative research group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983CrossRefGoogle Scholar
  95. Titica J, van Bogaert L (1946) Heredo-degenerative hemiballismus: a contribution to the question of primary atrophy of the corpus Luysii. Brain 69: 251–263PubMedCrossRefGoogle Scholar
  96. Ueno S, Kondoh K, Kotani Y et al (1995) Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA). Hum Mol Genet 4: 663–666PubMedCrossRefGoogle Scholar
  97. Wanker E.E., Rovira C, Scherzinger E et al (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet 6: 487–495PubMedCrossRefGoogle Scholar
  98. Warner T.T., Lennox G.G., Janota I et al (1994b) Autosomal-dominant dentatorubropallidoluysian atrophy in the united kingdom. Mov Disord 9: 289–296PubMedCrossRefGoogle Scholar
  99. Warner T.T., Williams L, Harding A.E. (1994a) DRPLA in Europe. Nat Genet 6: 225–225PubMedCrossRefGoogle Scholar
  100. Wood J.D., Yuan J, Margolis R.L. et al (1998) Atrophin-1, the DRPLA gene product, interacts with two families of ww domain-containing proteins. Mol Cell Neurosci 11:149–160PubMedCrossRefGoogle Scholar
  101. Yanagisawa H, Fujii K, Nagafuchi S et al (1996) A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. Hum Mol Genet 5: 373–379PubMedCrossRefGoogle Scholar
  102. Yazawa I, Nukina N, Hashida H et al (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 10: 99–103PubMedCrossRefGoogle Scholar
  103. Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1a-voltagedependent calcium channel. Nat Genet 15: 62–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • S. Tsuji
    • 1
  1. 1.Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan

Personalised recommendations