Apoptosis as a general cell death pathway in neurodegenerative diseases

  • D. Offen
  • H. Elkon
  • E. Melamed
Conference paper


Neurodegenerative processes are generally characterized by the long-lasting course of neuronal death and the selectivity of the neuronal population or brain structure involved in the lesion. Two main common forms of cell death that have been described in neurons as in other vertebrate tissues i.e., necrosis and apoptosis. Necrosis is the result of cellular “accidents”, such as those occurring in tissues subjected to chemical trauma. The necrotizing cells swell, rupture and provoke an inflammatory response. Apoptosis, on the other hand, is dependent on the cell’s “decision” to commit suicide and die, and therefore is referred to as “programmed cell death” (PCD). The course of apoptotic death is characterized by a massive morphological change, including cell shrinkage, nuclear (chromosome) condensation and DNA degradation. Activation of PCD in an individual cell is based on its own internal metabolism, environment, developmental background and its genetic information. Such a situation occurs in most of the neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases and amyotrophic lateral sclerosis (ALS). In these pathological situations, specific neurons undergo apoptotic cell death characterized by DNA fragmentation, increased levels of pro-apoptotic genes and “apoptotic proteins” both, in human brain and in experimental models. It is of utmost importance to conclusively determine the mode of cell death in neurodegenerative diseases, because new “antiapoptotic” compounds may offer a means of protecting neurons from cell death and of slowing the rate of cell degeneration and illness progression.


Amyotrophic Lateral Sclerosis PC12 Cell Motor Neuron Apoptotic Cell Death Prion Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexianu M.E., Mohamed A.H., Smith R.G., Colom L.V., Appel S.H. (1994) Apoptotic cell death of a hybrid motoneuron cell line induced by immunoglobulins from patients with amyotrophic lateral sclerosis. J Neurochem 63(6): 2365–2368PubMedCrossRefGoogle Scholar
  2. Anderson A.J., Su J.H., Cotman C.W. (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16: 1710–1719PubMedGoogle Scholar
  3. Anglande P, Vyas S, Javoy-Agid F (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31Google Scholar
  4. Banati R.B., Daniel S.E., Blount S.B. (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227PubMedCrossRefGoogle Scholar
  5. Bredesen D.E. (1995) Neural apoptosis. Ann Neurol 38: 839–851PubMedCrossRefGoogle Scholar
  6. Brown R.H. Jr (1997) Amyotrophic lateral sclerosis. Insights from genetics. Arch Neurol 54(10): 1246–1250PubMedCrossRefGoogle Scholar
  7. Butterworth N.J., Williams L, Bullock J.Y., Love D.R., Faull R.L., Dragunow M (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s disease striatum. Neuroscience 87: 49–53PubMedCrossRefGoogle Scholar
  8. Clutton S (1997) The importance of oxidative stress in apoptosis. Br Med Bull 53: 662–668PubMedCrossRefGoogle Scholar
  9. Cohen O, Kohen R, Lavon E, Abramsky O, Steiner I (1996) Serum Cu/Zn superoxide dismutase activity is reduced in sporadic amyotrophic lateral sclerosis patients. J Neurol Sci 143(1–2): 118–120Google Scholar
  10. de la Monte S.M., Sohn Y.K., Wands J.R. (1997) Correlates of p53- and Fas (CD95)mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152: 73–83PubMedCrossRefGoogle Scholar
  11. de la Monte S.M., Sohn Y.K., Ganju N, Wands J.R. (1998) P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78: 401–411PubMedGoogle Scholar
  12. DiFiglia M, Sapp E, Chase K.O., Davies S.W., Bates G.P., Vonsattel J.P. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993PubMedCrossRefGoogle Scholar
  13. Dorandeu A, Wingertsmann L, Chretien F, Delisle M.B., Vital C, Parchi P, Montagna P, Lugaresi E, Ironside J.W., Budka H, Gambetti P, Gray F (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8: 531–537PubMedCrossRefGoogle Scholar
  14. Dragunow M, Faull R.L., Lawlor P, Beilharz E.J., Singleton K, Walker E.B., Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6(7): 1053–1057PubMedCrossRefGoogle Scholar
  15. Dragunow M, Faull R.L., Lawlor P (1996) In-situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreprot 6: 1053–10577CrossRefGoogle Scholar
  16. Durham H.D., Roy J, Dong L, Figlewicz D.A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56(5):523–530PubMedCrossRefGoogle Scholar
  17. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420): 543–546PubMedCrossRefGoogle Scholar
  18. Forloni G, Bugiani O, Tagliavini F, Salmona M (1996) Apoptosis-mediated neurotoxicity induced by beta-amyloid and PrP fragments. Mol Chem Neuropathol 1–3: 163–171CrossRefGoogle Scholar
  19. Fraker PJ, King LE, Lill-Elghanian D, Telford WG (1995) Quantification of apoptotic events in pure and heterogeneous popUlations of cells using the flow cytometer. Meth Cell Biol 46: 57–76CrossRefGoogle Scholar
  20. Gavrieli Y, Sherman Y, Ben-Sasson S.A., (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3): 493–501PubMedCrossRefGoogle Scholar
  21. Ghadge G.D., Lee J.P., Bindokas V.P., Jordan J, Ma L, Miller R.J., Roos R.P. (1997) Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J Neurosci 17: 8756–8766PubMedGoogle Scholar
  22. Giese A, Groschup M.H., Hess B, Kretzschmar H.A. (1995) Neuronal cell death in scrapieinfected mice is due to apoptosis. Brain Pathol 5: 213–221PubMedCrossRefGoogle Scholar
  23. Goldberg Y.P., Nicholson D.W., Rasper D.M., Kalchman M.A., Koide H.B., Graham R.K., Bromm M, Kazemi-Esfarjani P, Thornberry N.A., Vaillancourt J.P., Hayden M.R. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet 13: 442–449PubMedCrossRefGoogle Scholar
  24. Gorman A.M., McGowan A, O’Neill C, Cotter T (1996) Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci 139: S45–S52CrossRefGoogle Scholar
  25. Gorman A.M., Orrenius S, Ceccatelli S (1998) Apoptosis in neuronal cells: role of caspases. Neuroreport 9: R49–R55PubMedCrossRefGoogle Scholar
  26. Gurney M.E. (1997) Transgenic animal models of familial amyotrophic lateral sclerosis. J Neurol 244 [Suppl 2]: S15–S20PubMedCrossRefGoogle Scholar
  27. Hochman A, Sternin H, Gorodin S, Korsmeyer S, Ziv I, Melamed E, Offen D (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 71: 741–748PubMedCrossRefGoogle Scholar
  28. Hutchins J.B., Barger S.W. (1998) Why neurons die: cell death in the nervous system. Anat Rec 253: 79–90PubMedCrossRefGoogle Scholar
  29. Irwin I, DeLanney L.E., McNeill T, Chan P, Forno L.S., Murphy G.M. Jr, Di Monte D.A., Sandy M.S., Langston J.W. (1994) Aging and the nigrostriatal dopamine system: a nonhuman primate study. Neurodegeneration 3: 251–265PubMedGoogle Scholar
  30. Kaal E.C., Joosten E.A., Bar P.R. (1997) Prevention of apoptotic motoneuron death in-vitro by neurotrophins and muscle extract. Neurochem Int 31: 193–201PubMedCrossRefGoogle Scholar
  31. Kingsbury A.E., Mardsen C.D., Foster O.J. (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13(6): 877–884PubMedCrossRefGoogle Scholar
  32. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608PubMedCrossRefGoogle Scholar
  33. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232: 418–421PubMedCrossRefGoogle Scholar
  34. Kizaki H, Ohnishi Y, Azuma Y, Mizuno Y, Ohsaka F (1993) 1-beta-D-arabinosylcytosine and 5-azacytidine induce internucleosomal DNA fragmentation and cell death in thymocytes. Immunopharmacology. 25: 19–27PubMedCrossRefGoogle Scholar
  35. Kosel S, Egensperger R, Eitzen V, Mehraein P, Graeber M.B. (1997) On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol (Berlin) 93: 105–108PubMedCrossRefGoogle Scholar
  36. Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S (1997) Bcl- 2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277: 559–562PubMedCrossRefGoogle Scholar
  37. Kretzschmar H.A., Giese A, Brown D.R., Herms J, Keller B, Schmidt B, Groschup M (1997) Cell death in prion disease. J Neural Transm [Suppl] 50: 191–210CrossRefGoogle Scholar
  38. Langston W.J. (1998) Epidemiology versus genetic in genetic in Parkinson’s disease progress in resolving an age-old debate. Ann Neurol 44: S58–S62Google Scholar
  39. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol (Berl) 89(1): 35–41PubMedCrossRefGoogle Scholar
  40. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein M.J., Jonnalagada S, Chemova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson K.D., Polymeropoulos M.H. (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395: 451–452PubMedCrossRefGoogle Scholar
  41. Lo A.C., Houenou L.J., Oppenheim R.W. (1995) Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch Histol Cytol 58: 139–149PubMedCrossRefGoogle Scholar
  42. Lucassen P.J., Williams A, Chung W.C., Fraser H (1995) Detection of apoptosis in murine scrapie. Neurosci Lett 198: 185–188PubMedCrossRefGoogle Scholar
  43. Luo Y, Umegaki H, Wang X, Abe R, Roth G.S. (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273:3756–3764PubMedCrossRefGoogle Scholar
  44. MacGibbon G.A., Lawlor P.A., Sirimanne E.S., Walton M.R., Connor B, Young D, Williams C, Gluckman P, Faull R.L., Hughes P, Dragunow M (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease. Brain Res 750: 223–234PubMedCrossRefGoogle Scholar
  45. MacGibbon G.A., Lawlor P.A., Walton M, Sirimanne E, Faull R.L., Synek B, Mee E, Connor B, Dragunow M (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147: 316–332PubMedCrossRefGoogle Scholar
  46. Masliah E, Raber J, Alford M, Mallory M, Mattson M.P., Yang D, Wong D, Mucke L (1998) Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. J Biol Chem 273(20): 12548–12554PubMedCrossRefGoogle Scholar
  47. McGeer P.L., Kawamata T, McGeer E.G. (1998) Localization and possible functions of presenilins in brain. Rev Neurosci 9: 1–15PubMedCrossRefGoogle Scholar
  48. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histology detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123PubMedCrossRefGoogle Scholar
  49. Mu X, He J, Anderson D.W., Trojanowski J.Q., Springer J.E. (1996) Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 40(3): 379–386PubMedCrossRefGoogle Scholar
  50. Nicholas W.W. (1998) Genetic risk in Parkinson’s disease. Ann Neurol 44: S58–S62Google Scholar
  51. Nishimoto I (1998) A new paradigm for neurotoxicity by FAD mutants of betaAPP: a signaling abnormality. Neurobiol Aging 19: S33–S38PubMedCrossRefGoogle Scholar
  52. Offen D, Ziv I, Gorodin S, Barzilai A, Malik Z, Melamed E (1995) Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta 1268: 171–177PubMedCrossRefGoogle Scholar
  53. Offen D, Ziv I, Sternin H, Melamed E, Hochman A (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 41: 32–39CrossRefGoogle Scholar
  54. Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, Barzilai A (1997a) Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol 17: 289–304PubMedCrossRefGoogle Scholar
  55. Offen D, Ziv I, Barzilai A, Gorodin S, Glater E, Hochman A, Melamed E (1997b) Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson’s disease. Neurochem Int 31: 207–216PubMedCrossRefGoogle Scholar
  56. Offen D, Beart P.M., Cheung N.S., Pascoe C.J., Hochman A, Gorodin S, Melamed E, Bernard R, Bernard O (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and I-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 95: 5789–5794PubMedCrossRefGoogle Scholar
  57. Ookohchi T, Ito H, Serikawa T, Sato K (1997) Detection of apoptosis in the brain of the zitter rat with genetic spongiform encephalopathy. Biochem Mol Biol Int 41: 279–284PubMedGoogle Scholar
  58. Orrell R.W., Habgood J.J., Gardiner I, King A.W., Bowe F.A., Hallewell R.A., Marklund S.L., Greenwood J, Lane R.J., deBelleroche J (1997) Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-1zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 48: 746–751PubMedCrossRefGoogle Scholar
  59. Poirier J, Sevigny P (1998) Apolipoprotein E4, cholinergic integrity and the pharmacogenetics of Alzheimer’s disease. J Neural Transm [Suppl] 53: 199–207CrossRefGoogle Scholar
  60. Polymeropoulos M.H., Lavedan C, Leroy E, Ide S.E., Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos E.S., Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G, Golbe L.I., Nussbaum R.L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047PubMedCrossRefGoogle Scholar
  61. Portera-Cailliau C, Hedreen J.C., Price D.L., Koliatsos V.E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15: 3775–3787PubMedGoogle Scholar
  62. Prusiner S.B. (1998) The prion diseases. Brain Pathol 8(3): 499–513Google Scholar
  63. Rabizadeh S, Gralla E.B., Borchelt D.R., Gwinn R, Valentine J.S., Sisodia S, Wong P, Lee M, Hahn H, Bredesen D.E. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an anti-apoptotic gene to a pro-apoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci USA 92(7): 3024–3028PubMedCrossRefGoogle Scholar
  64. Renbaum P, Levy-Lahad E (1998) Monogenic determinants of familial Alzheimer’s disease: presenilin-2 mutations. Cell Mol Life Sci 54: 910–919PubMedCrossRefGoogle Scholar
  65. Saudou F, Finkbeiner S, Devys D, Greenberg M.E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66PubMedCrossRefGoogle Scholar
  66. Sendtner M, Dittrich F, Hughes R.A. (1994) Actions of CNTF and neurotrophins on degenerating motor neurons: preclinical studies and clinical implications. J Neurol Sci 124: 77–83PubMedCrossRefGoogle Scholar
  67. Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S (1996) Dopamineinduced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter. Neuroscience 74: 39–50PubMedCrossRefGoogle Scholar
  68. Simonian N.A., Coyle (1997) Oxidative stress in neurodegenerative disease Annu Pharmacol Toxicol 36: 83–106Google Scholar
  69. Small G.W. (1998) The pathogenesis of Alzheimer’s disease. J Clin Psychiatry 59: S7–S14Google Scholar
  70. Takai N, Nakanishi H, Tanabe K, Nishioku T, Sugiyama T, Fujiwara M, Yamamoto K (1998) Involvement of caspase-like pin apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J Neurosci Res 54: 214–222PubMedCrossRefGoogle Scholar
  71. Tatton N.A., Maclean-Fraser A, Tatton W.G., Perl D.P., Olanow C.W. (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44: S142–S148PubMedGoogle Scholar
  72. Tews DS, Goebel H.H., Meinck H.M. (1997) DNA-fragmentation and apoptosis-related proteins of muscle cells in motor neuron disorders. Acta Neurol Scand 96: 380–386PubMedCrossRefGoogle Scholar
  73. Thomas L.B., Gates D.J., Richfield E.K., O’Brien T.F., Schweitzer JB, Steindler D.A. (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133: 265–272PubMedCrossRefGoogle Scholar
  74. Troost D, Aten J, Morsink F, de-Jong J.M. (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post-central gyrus. Neuropathol Appl Neurobiol 21: 498–504Google Scholar
  75. Vechio J.D., Bruijn L.I., Xu Z, Brown R.H. Jr, Cleveland D.W. (1996) Sequence variants in human neurofilament proteins: absence of linkage to familial amyotrophic lateral sclerosis. Ann Neurol 40(4): 603–610PubMedCrossRefGoogle Scholar
  76. Wellington C.L., Brinkman R.R., O’Kusky JR, Hayden M.R. (1997) Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 7: 979–1002PubMedCrossRefGoogle Scholar
  77. Wellington C.L., Ellerby L.M., Hackam A.S., Margolis R.L., Trifiro M.A., Singaraja R, McCutcheon K, Salvesen G.S., Propp S.S., Bromm M, Rowland K.J., Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross C.A., Nicholson D.W., Bredesen D.E., Hayden M.R. (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273: 9158–9167PubMedCrossRefGoogle Scholar
  78. Wiedau-Pazos M, Goto J.J., Rabizadeh S, Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredesen D.E. (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518PubMedCrossRefGoogle Scholar
  79. Williams A, Lucassen P.J., Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144(2): 433–438PubMedCrossRefGoogle Scholar
  80. Wyllie A.H., Kerr J.F.R., Currie A.R. (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306PubMedCrossRefGoogle Scholar
  81. Yang F, Sun X, Beech W, Teter B, Wu S, Sigel J, Vinters H.V., Frautschy S.A., Cole G.M. (1998a) Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. Am J Pathol 152: 379–389PubMedGoogle Scholar
  82. Yang L, Matthews R.T., Schulz J.B., Klockgether T, Liao A.W., Martinou J.C., Penney JB Jr, Hyman B.T., Beal M.F. (1998b) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing bcl-2. J Neurosci 18: 8145–8152PubMedGoogle Scholar
  83. Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, Le(Y) and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 88: 207–211PubMedCrossRefGoogle Scholar
  84. Zhang J, Price J.O., Graham D.G., Montine T.J. (1998) Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures.Biochem Biophys Res Commun 248: 812–816PubMedCrossRefGoogle Scholar
  85. Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D, Barzilai A (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenic mechanism in Parkinson’s disease. Neurosci Lett 170: 136–140PubMedCrossRefGoogle Scholar
  86. Ziv I, Barzilai A, Offen D, Nardi N, Melamed E (1997) Nigrostriatal neuronal death in Parkinson’s disease: a passive or an active genetically-controlled process? J Neural Transm [Suppl] 49: S69–S76Google Scholar
  87. Ziv I, Offen D, Barzilai A, Haviv R, Stein R, Zilkha-Falb Z.R., Shirvan A, Melamed E (1997) Modulation of control mechanisms of dopamine-induced apoptosis-a future approach to the treatment of Parkinson’s disease? J Neural Transm [Suppl] 49: S195–S202Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • D. Offen
    • 1
  • H. Elkon
    • 1
  • E. Melamed
    • 1
  1. 1.Neurology Department and Felsenstein Medical Research CenterSackler School of Medicine, Tel Aviv University, Rabin Medical CenterPetah-TikvaIsrael

Personalised recommendations