Highly Accurate Verified Error Bounds for Krylov Type Linear System Solvers

  • Axel Facius


Preconditioned Krylov subspace solvers are an important and frequently used technique for solving large sparse linear systems. There are many advantageous properties concerning convergence rates and error estimates. However, implementing such a solver on a computer, we often observe an unexpected and even contrary behavior.


Krylov Subspace Krylov Subspace Method Finite Precision Correct Digit Multiple Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Adams. Life, the Universe and Everything. Ballantine Books, 1995.Google Scholar
  2. 2.
    G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, 1983Google Scholar
  3. 3.
    American National Standards Institute / Institute of Electrical and Electronic Engineers, New York. A Standard for Binary Floating-Point Arithmetic, 1985. ANSI/IEEE Std. 754-1985.Google Scholar
  4. 4.
    T. J. Dekker. A floating-point technique for extending the available precision. Numer. Math., 18:224–242, 1971.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. Demmel, B. Diament, and G. Malajovich. On the complexity of computing error bounds. www.cs.berkeley.edurdemmel/, 1999.Google Scholar
  6. 6.
    A. Facius. The need for higher precision in solving ill-conditioned linear systems. to be published in Iterative methods in Scientific Computation II, 2000.Google Scholar
  7. 7.
    A. Frommer and A. Weinberg. Verified error bounds for linear systems through the Lanczos process. Reliable Computing, 5(3):255–267, 1999.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G. Golub and C. van Loan. Matrix Computations. Johns Hopkins, third edition, 1996.Google Scholar
  9. 9.
    T. Granlund. The GNU Multiple Precision Arithmetic Library. Scholar
  10. 10.
    A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.MATHCrossRefGoogle Scholar
  11. 11.
    M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49:409–436, 1952.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996.MATHGoogle Scholar
  13. 13.
    R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC. Springer Verlag, 1992.Google Scholar
  14. 14.
    U. Kulisch. Advanced Aithmetic for the Digital Computer- Design of Arithmetic Units. Electronic Notes of Theoretical Computer Science, pp. 1-72, 1999.Google Scholar
  15. 15.
    C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research 0/ the National Bureau of Standards, 45:255–282, 1950.MathSciNetCrossRefGoogle Scholar
  16. 16.
    The matrix market: a visual web database for numerical matrix data. Scholar
  17. 17.
    C. Paige. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, University of London, 1971.Google Scholar
  18. 18.
    C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Soft., 8:43–71, 1982.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogonalization. Math. Comput., 33:217–238, 1979.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    S. M. Rump. Validated solution of large linear systems. In R. Albrecht, G. Alefeld, and H. J. Stetter, editors, Validation Numeries, number 9 in Computing Supplementum, pages 191–212. Springer Verlag, 1993.Google Scholar
  21. 21.
    H. D. Simon. The Lanczos Algorithm for Solving Symmetrie Linear Systems. PhD thesis, University of California, Berkeley, 1982.Google Scholar
  22. 22.
    Z. Strakos. On the real convergence rate of the conjugate gradient method. Linear Algebra Appl., 154/156:535–549, 1991.MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. H. Wilkinson. The Aigebraic Eigenvalue Problem. Clarendon Press, Oxford, 1988.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Axel Facius
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations