Advertisement

Nonsmooth Global Optimization

  • Dietmar Ratz

Abstract

What can interval analysis do for Nonsmooth Global Optimization?

We will answer this quest ion by presenting an overview on pruning techniques based on interval slopes in the context of interval branch-and-bound methods for global optimization. So, this paper is intended to guide interested researchers to future research and improvements or to ways of using the techniques in different contexts.

Keywords

Global Optimization Global Minimizer Centered Form Function Eval Global Optimization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alefeld, G. and Herzberger, J. (1983): Introduction to Interval Computations, Academic Press, New York.Google Scholar
  2. 2.
    Bomze, I. M., Csendes, T., Horst, R., and Pardalos, P. M. (Eds.) (1996): Developments in Global Optimization, Kluwer Academic Publishers, Dordrecht.Google Scholar
  3. 3.
    Clarke, F. H. (1983): Optimization and Nonsmooth Analysis, Wiley, New York.Google Scholar
  4. 4.
    Csendes, T. (1989): An Interval Method for Bounding Level Sets of Parameter Estimation Problems, Computing, 41, 75–86.MATHGoogle Scholar
  5. 5.
    Csendes, T. and Pinter, J. (1993): The Impact of Accelerating Tools on the Interval Subdivision Algorithm for Global Optimization, European Journal of Operational Research, 65, 314–320.Google Scholar
  6. 6.
    Csendes, T. and Ratz, D. (1997): Subdivision Direction Selection in Interval Methods for Global Optimization, SIAM Journal on Numerical Analysis, 34, 922–938.MATHGoogle Scholar
  7. 7.
    Floudas, C. A. and Pardalos, P. M. (Eds.) (1996): State of the Art in Global Optimization, Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  8. 8.
    Grossmann, I. E. (Ed.) (1995): Global Optimization in Engineering Design, Kluwer Academic Publishers, Dordrecht.Google Scholar
  9. 9.
    Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1993): Numerical Toolbox for Verified Computing I, Springer-Verlag, Berlin.Google Scholar
  10. 10.
    Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995): C++ Toolbox for Verified Computing I, Springer-Verlag, Berlin.Google Scholar
  11. 11.
    Hansen, E. (1979): Global Optimization Using Interval Analysis- The OneDimensional Case, Journal of Optimization Theory and Applications, 29, 331–344.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hansen, E. (1980): Global Optimization Using Interval Analysis- The MultiDimensional Case, Numerische Mathematik, 34, 247–270.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansen, E. (1992): GlobalOptimization Using Interval Analysis, Marcel Dekker, New York.Google Scholar
  14. 14.
    Hansen, P., Jaumard, B., and Xiong, J. (1994): Cord-Slope Form of Taylor’s Expansion in Univariate Global Optimization, Journal of Optimization Theory and Applications, 80, 441–464.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hofschuster, W. and Krämer, W. (1997): A Computer Oriented Approach to Get Sharp Reliable Error Bounds, Reliable Computing, 3, 239–248.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hofschuster, W. and Krämer, W. (1997): A Fast Public Domain Interval Library in ANSI C, To appear in: Proceedings of the 15th IMACS World Congress 1997.Google Scholar
  17. 17.
    Horst, R. and Pardalos, P. M. (Eds.) (1995): Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht.Google Scholar
  18. 18.
    Ichida, K. and Fujii, Y. (1979): An Interval Arithmetic Method for Global Optimization, Computing, 23, 85–97.MATHGoogle Scholar
  19. 19.
    Jansson, C. (1994): On Self- Validating Methods for Optimization Problems, In: Herzberger, J.: Topics in Validated Computations, North-Holland, Amsterdam.Google Scholar
  20. 20.
    Kearfott, R. B. (1996): Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Boston.Google Scholar
  21. 21.
    Klatte, R., Kulisch, U., Neaga, M., Ullrich, Ch. and Ratz, D. (1992): PASCALXSC - Language Description with Examples, Springer-Verlag, Berlin.Google Scholar
  22. 22.
    Krawczyk, R. and Nickel, K. (1982): The Centered Form in Interval Arithmetics: Quadratic Convergence and Inclusion Isotonicity, Computing, 28, 117-137.Google Scholar
  23. 23.
    Krawczyk, R. and Neumaier, A. (1985): Interval Slopes for Rational Functions and Associated Centered Forms, SIAM Journal on Numerical Analysis, 22, 604–616.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kulisch, U. and Miranker, W. L. (1981): Computer Arithmetic in Theory and Practice, Academic Press, New York.Google Scholar
  25. 25.
    Lemarechal, C. and MifHin, R. (Eds.) (1978): Nonsmooth Optimization, Proceedings of a IIASA Workshop, held at Institute for Research in Applied Mathematics and Systems workshop, 1977. IIASA Proceeding Series, Vol. 3, Pergamon Press, Oxford.Google Scholar
  26. 26.
    Levy, A. L., Montalvo, A., Gomez, S., and Calderon, A. (1981): Topics in Global Optimization, In: Hennart, J.-P. (Ed.): Numerical Analysis. Proceedings of the 3rd IIMAS Institute for Research in Applied Mathematics and Systems workshop, held at Cocoyoc, Mexico, 1981. Lecture notes in mathematics, No. 909, Springer-Verlag, Berlin.Google Scholar
  27. 27.
    Moore, R. E. (1966): Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.MATHGoogle Scholar
  28. 28.
    Murty, K. G. and Kabadi S. N. (1987): Some NP-Complete Problems in Quadratic and Nonlinear Programming, Mathematical Programming, 39, 117–130.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Neumaier, A. (1990): Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.Google Scholar
  30. 30.
    Rall, L. B. (1981): Automatie Differentiation, Teehniques and Applieations, Lecture Notes in Computer Science, No. 120, Springer-Verlag, Berlin.Google Scholar
  31. 31.
    Ratschek, H. and Rokne, J. (1988): New Computer Methods for Global Optimization, Ellis Horwood, Chichester.MATHGoogle Scholar
  32. 32.
    Ratz, D. (1992): Automatische Ergebnisverifikation bei globalen Optimierungsproblemen, Dissertation, Universität Karlsruhe.Google Scholar
  33. 33.
    Ratz, D. (1994): Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimization Method, Computing, 53, 337–353, Springer-Verlag, Wien.Google Scholar
  34. 34.
    Ratz, D. and Csendes, T. (1995): On the Seleetion of Subdivision Direetions in Interval Braneh-and-Bound Methods for Global Optimization, Journal of Global Optimization, 7, 183–207.CrossRefGoogle Scholar
  35. 35.
    Ratz, D. (1996): An Optimized Interval Slope Arithmetie and its Applieation, Forschungsschwerpunkt Computerarithmetik, Intervallrechnung und Numerische Algorithmen mit Ergebnisverifikation, Bericht 4/1996.Google Scholar
  36. 36.
    Ratz, D. (1996): On Branehing Rules in Seeond-Order Braneh-and-Bound Methods for Global Optimization, In: Alefeld, G., Frommer, A. und Lang, B. (Eds.), Seientifie Computing and Validated Numeries, 221–227, AkademieVerlag, Berlin.Google Scholar
  37. 37.
    Ratz, D. (1997): A Nonsmooth Global Optimization Teehnique Using Slopes - The One-Dimensional Case, Accepted for publication in Journal of Global Optimization.Google Scholar
  38. 38.
    Ratz, D. (1998): Automatie Slope Computation and its Applieation in Nonsmooth Global Optimization. Shaker-Verlag, Aachen.Google Scholar
  39. 39.
    Skelboe, S. (1974): Computation of Rationallnterval Funetions, BIT, 4, 87–95.MATHGoogle Scholar
  40. 40.
    Törn, A. and Žilinskas, A. (1989): Global Optimization, Lecture Notes in Computer Science, No. 350, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Dietmar Ratz
    • 1
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations