A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations

  • Nedialko S. Nedialkov
  • Kenneth R. Jackson


The problem of reducing the wrapping effeet in interval methods for initial value problems for ordinary differential equations has usually been studied from a geometrie point of view. We develop a new perspeetive on this problem by linking the wrapping effeet to the stability of the interval method. Thus, redueing the wrapping effect is related to finding a more stable seheme for advaneing the solution. This allows us to exploit eigenvalue teehniques and to avoid the eomplieated geometrie arguments used previously.


Negative Eigenvalue Global Error Interval Arithmetic Interval Method Interval Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.MATHGoogle Scholar
  2. 2.
    U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.MATHCrossRefGoogle Scholar
  3. 3.
    C. Barbăroşie. Reducing the wrapping effect. Computing, 54(4):347–357, 1995.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. Berz and K. Makino. Verified integration of ODEs and ßows using differential algebraic methods on high-order Taylor models. Reliable Computing, 4:361–369, 1998.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arithmetic. Mathematical Centre Tracts No. 144. Stichting Mathematisch Centrum, Amsterdam, 1981.Google Scholar
  6. 6.
    J. G. F. Francis. The QR transformation: A unitary analogue to the LR transformation-part 1. The Computer Journal, 4:265–271, 1961/1962.MathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Gambill and R. Skeel. Logarithmic reduction of the wrapping effect with application to ordinary differential equations. SIAM J. Numer. Anal., 25(1):153–162, 1988.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations 1. N onstiff Problems. Springer-Verlag, 2nd revised edition, 1991.Google Scholar
  9. 9.
    L. W. Jackson. A comparison of ellipsoidal and interval arithIIietic error bounds. In Studies in Numerical Analysis, vol. 2, Proc. Fall Meeting of the Society for Industrial and Applied Mathematics, Philadelphia, 1968. SIAM.Google Scholar
  10. 10.
    L. W. Jackson. Automatie error analysis for the solution of ordinary differential equations. Technical Report 28, Dept. of Computer Science, University of Toronto, 1971.Google Scholar
  11. 11.
    L. W. Jackson. Interval arithmetic error-bounding algorithms. SIAM J. Numer. Anal., 12(2):223–238, 1975.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    W. Kahan. A computable error bound for systems of ordinary differential equations. Abstract in SIAM Review, 8:568–569, 1966.Google Scholar
  13. 13.
    F. Krückeberg. Ordinary differential equations. In E. Hansen, editor, Topics in Interval Analysis, pages 91–97. Clarendon Press, Oxford, 1969.Google Scholar
  14. 14.
    W. Kühn. Rigorously computed orbits of dynamical systems without the wrapping effect. Computing, 61(1):47–67, 1998.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    R. J. Lohner. Einschlieftung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. PhD thesis, Universität Karlsruhe, 1988.Google Scholar
  16. 16.
    R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.MATHGoogle Scholar
  17. 17.
    N. S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, Department of Computer Science, University ofToronto, Toronto, Canada, M5S 3G4, February 1999.Google Scholar
  18. 18.
    N. S. Nedialkov and K. R. Jackson. atAn interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Reliable Computing, 5(3):289-310, 1999. Also in T. Csendes, editor, Developments in Reliable Computing, pp. 289-310, Kluwer, Dordrecht, Netherlands, 1999.Google Scholar
  19. 19.
    N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions ofinitial value problems for ordinary differential equations. Applied Mathematics and Computation, 105(1):21–68, 1999.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, 2000. Accepted for publication in Reliable Computing, 17 pages.Google Scholar
  21. 21.
    A. Neumaier. Global, rigorous and realistic bounds for the solution of dissipative differential equations. Part I: Theory. Computing, 52(4):315–336, 1994.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    K. Nickel. How to fight the wrapping effect. In K. Nickel, editor, Interval Analysis 1985, Lecture Notes in Computer Science No. 212, pages 121-132. Springer, Berlin, 1985.Google Scholar
  23. 23.
    R. Rihm. Interval methods for initial value problems in ODEs. In J. Herzberger, editor, Topics in Validated Computations: Proceedings of the IMACS-GAMM International Workshop on Validated Computations, University of Oldenburg, Elsevier Studies in Computational Mathematics, pages 173–207. Elsevier, Amsterdam, New York, 1994.Google Scholar
  24. 24.
    N. Stewart. A heuristic to reduce the wrapping effect in the numerical solution of x’ = f(t, x). BIT, 11:328–337, 1971.MATHCrossRefGoogle Scholar
  25. 25.
    D. S. Watkins. Understanding the QR algorithm. SIAM Review, 24(4):427–440, October 1982.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Science Publications, Oxford, England, 1965MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Nedialko S. Nedialkov
    • 1
  • Kenneth R. Jackson
    • 2
  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada
  2. 2.Department of Computer SeienceUniversity of TorontoTorontoCanada

Personalised recommendations