On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds

  • Rudolf J. Lohner


Historically, the wrapping effect was discovered and named in the context of solving ordinary initial value problems in interval arithmetic. Its explanation was obviously geometric: rotations of interval vectors enclosing the set of solutions catch excessive points into the enclosure which may eventually ‘explode’ exponentially. Also discrete dynamical systems share this undesirable behaviour. In the literature the wrapping effect has been discussed primarily in this context.


Difference Equation Interval Arithmetic Automatic Differentiation Taylor Model Linear Difference Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alefeld, G., Herzberger, J.: An Introduction to Interval Computations. Academic Press, New York, 1983.Google Scholar
  2. 2.
    Anguelov, R., Markov, S.: Wrapping effect and wrapping function. Reliab. Comput. 4, No.4, 311–330 (1998).Google Scholar
  3. 3.
    Berz, M.: Verified integration 01 ODEs and fiows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4, No.4, 361–369 (1998).Google Scholar
  4. 4.
    Eijgenraam, P.: The Solution 01 Initial Value Problems Using Interval Arithmetic. Math. Centre Tracts 144, Mathematisch Centrum, Amsterdam (1981).Google Scholar
  5. 5.
    Gambill, T.N. Skeel, R.D.: Logarithmic Reduction 01 the Wrapping Effect with Applications to Ordinary Differential Equations. SIAM J. Numer. Anal. 25, 153–162 (1988).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jackson, L.W.: Interval Arithmetic Error-Bounding Algorithms. SIAM J. Numer. Anal. 12, 223–238 (1975).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kühn, W.: Rigorously Computed Orbits 01 Dynamical Systems Without the Wrapping Effect. Computing 61, No. 1, 47–67 (1998).MathSciNetGoogle Scholar
  8. 8.
    Kühn, W.: Zonotope Dynamics in Numerical Quality Control. In: Hege, H-Ch. (ed.) et al.: Mathematical visualization. Algorithms, applications, and numerics. International workshop Visualization and mathematics, Berlin, Germany, September 16-19, 1997. Berlin: Springer. 125-134 (1998).Google Scholar
  9. 9.
    Kühn, W.: Towards an Optimal Control of the Wrapping Effect. In: Csendes, Tibor (ed.), Developments in reliable computing. SCAN-98 conference, 8th international symposium on Scientific computing, computer arithmetic and validated numerics. Budapest, Hungary, September 22-25, 1998. Dordrecht: Kluwer Academic Publishers. 43-51 (1999).Google Scholar
  10. 10.
    Lohner, R.J.: Enclosing the Solutions of Ordinary Initial- and Boundary- Value Problems. In: Kaucher, E., Kuliseh, U., Ullrich Ch. (eds.): Computerarithmetic, pp. 225–286, Teubner Stuttgart (1987).Google Scholar
  11. 11.
    Lohner, R.J.: Einschlie-ung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen. Dissertation, University of Karlsruhe (1988).Google Scholar
  12. 12.
    Lohner, R.J.: Verified Computing and Programs in Pascal-XSC. Habilitationsschrift, University of Karlsruhe (1994).Google Scholar
  13. 13.
    Makino, K, Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5, No. 1, 3–12 (1999).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Moore, R.E.: Automatie local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations. Error in Digital Comput. 2, Proe. Symp. Madison 1965, 103–140 (1965).Google Scholar
  15. 15.
    Moore, R.E.: Interval Analysis. Englewood Cliffs, N.J. Prentice-Hall (1966).Google Scholar
  16. 16.
    Nedialkov, N.S., Jackson, KR., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105, No. 1, 21–68 (1999).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nedialkov, N.S., Jackson, KR.: A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations. This Volume. (2001)Google Scholar
  18. 18.
    Neumaier, A.: Interval methods for systems of equations. Encyclopedia of Mathematics and its Applications, 37. Cambridge etc.: Cambridge University Press. xvi, (1990).Google Scholar
  19. 19.
    Neumaier, A.: The Wrapping Effect, Ellipsoidal Arithmetic, Stability and Confidence Regions, Computing, Suppl. 9, 175–190 (1993).CrossRefGoogle Scholar
  20. 20.
    Nickel, K: How to fight the wrapping effect. Lect. Notes Comput. Sei. 212, 121–132 (1986).CrossRefGoogle Scholar
  21. 21.
    Rall, L.B.: Automatie Differentiation: Techniques and Applications. Lecture Notes in Computer Science, No. 120, Springer-Verlag, Berlin, 1981.Google Scholar
  22. 22.
    Stewart, N.P.: A heuristic to reduce the wrapping effect in the numerical solution ofx’ = f(t, x). BIT 11, 328–337 (1971).MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Rudolf J. Lohner
    • 1
  1. 1.Universität Karlsruhe (TH)Institut für Angewandte MathematikKarlsruheGermany

Personalised recommendations