Numerical Verification and Validation of Kinematics and Dynamical Models for Flexible Robots in Complex Environments

  • Wolfram Luther
  • Eva Dyllong
  • Daniela Fausten
  • Werner Otten
  • Holger Traczinski


We give a survey on well-known and new interval methods and algorithms with result verification in the field of robotics. In particular we present optimal linear controller design, reliable geometric computations for distances between a point and a non-convex polyhedron or a NURBS curve, path planning, and failure detection with fault tree logic for flexible robots in complex environments. We also present an extension of a multi body modelling and simulating tool, which provides error propagation control and reliable numerical algorithms.


Failure Probability Path Planning Interval Arithmetic Fault Tree Multi Body System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baluska, R. (1998) Fuzzy Modeling for Control. Kluwer Academic Publisher, Boston.Google Scholar
  2. 2.
    Bernd, Th., Kroll, A. (1998) FIMO 8.1: Ein Programmpaket zur rechnergestützten Fuzzy-Modellierung nichtlinearer Prozesse. 8. Workshop FuzzyControl, Dortmund, GMA-Fachausschuss 5.22, 154-167.Google Scholar
  3. 3.
    Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function AIgorithms. Plenum Press, New York.Google Scholar
  4. 4.
    Büdding, G., Fausten, D., Krämer, W., Luther, W., Möllers, Th., Otten, W., Traczinski, H. (1999) Verifikation von Lösungen ausgewählter Probleme aus der Modellierung von Manipulatoren. Technical Report, Gerhard-MercatorUniversität Duisburg SM-DU-433.Google Scholar
  5. 5.
    Carreras, C., Walker, I. D., Nieto, 0., Cavallaro, J. R. (1999) Robot reliability estimation using interval methods. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 371-385.Google Scholar
  6. 6.
    Denson, W., Chandler, G., Crowell, W., Clark, A., Jaworski, P. (1994) Nonelectronic Parts Reliability Data. Technical Report NPRD-95, Reliability Analysis Center, Rome, NY.Google Scholar
  7. 7.
    Dyllong, E., Luther, W. (2000) An accurate computation of the distance between a point and a polyhedron. In: Berveiller, M., Louis, A. K., Fressengeas, C. (Eds.) ZAMM, Vol. 80 of GAMM 99 Annual Meeting, Metz, France, April 12-16, WILEY-VCH, Berlin, S771-S772.Google Scholar
  8. 8.
    Dyllong, E., Luther, W. (2000) Distance-Calculation Between a Point and a NURBS Surface. In: Laurent, P.-J., Sablonniere, P., Schumaker, L. L. (Eds.) Curve and Surface Design, Saint Malo, 1999, Vanderbilt University Press, Nashville, TN, ISBN 0-8265-1356-5.Google Scholar
  9. 9.
    Dyllong, E., Luther, W., Otten, W. (1999) An accurate distance-calculation algorithm for convex polyhedra. Reliable Computing 3 (5), 241-254.Google Scholar
  10. 10.
    Fausten, D., Luther, W. (2000) Verifizierte Lösungen von nichtlinearen polynomialen Gleichungssystemen. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-477.Google Scholar
  11. 11.
    Fausten, D., Möllers, Th., Traczinski, H. (1999) Verified simulation of a hydraulic drive. In: RoMoCo’99: IEEE Workshop On Robotic Motion And Control, 23-27.Google Scholar
  12. 12.
    Gass, S. I. (1985) Linear Programming: Methods and Applications. Mc Graw Hill, New York.Google Scholar
  13. 13.
    Gomez, C. (Ed.) (1999) Engineering and Scientific Computing with Scilab. Birkhauser.Google Scholar
  14. 14.
    Kecskeméthy, A. (1996) MOBILE Version 1.2 User’s Guide and Reference Manual. 22. Luther, W. (1999) Accurate robot reliability estimation by fault tree techniques. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-459.Google Scholar
  15. 15.
    Kieffer, M., Walter, E. (1998) Interval analysis for guaranteed nonlinear parameter estimation. In: Atkinson, A. C., Pronzato, L., Wynn, H. P. (Eds.) MODA 5 - Advances in Model-Oriented Data Analysis and Experiment Design, Physica, Heidelberg, 115–125.Google Scholar
  16. 16.
    Kieffer, M., Jaulin, L., Walter, E., Meizel, D. (1999) Guaranteed mobile tracking using interval analysis. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 347-360.Google Scholar
  17. 17.
    Knüppel, O. (1993) Bias- basic interval arithmetic subroutines. Technical Report 93.3, TU Hamburg-Harburg.Google Scholar
  18. 18.
    Knüppel, O. (1993) PROFIL- Programmer’s Runtime Optimized Fast Interval Library. Technical Report 93.4, TU Hamburg-Harburg.Google Scholar
  19. 19.
    Krämer, W. (1998) APriori Worst Case Error Bounds for Floating-Point Computations. IEEE Trans. on Computers 47 (7), 750–756.MathSciNetGoogle Scholar
  20. 20.
    Kroll, A. (1997) Fuzzy-Systeme zur Modellierung und Regelung komplexer technischer Systeme, Ph. D. thesis, Universität Duisburg.Google Scholar
  21. 21.
    Lohner, R. (1989) Einschließungen bei Anfangs- und Randwertaufgaben gewöhnlicher Differentialgleichungen. In: Kulisch, U. W. (Hrsg.) Wissenschaftliches Rechnen mit Ergebnisverifikation, Vieweg, Braunschweig, 183-223.Google Scholar
  22. 22.
    Luther, W. (1999) Accurate robot reliability estimation by fault tree techniques. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-459.Google Scholar
  23. 23.
    Luther, W., Otten, W. (1999) Verified calculation of the solution of algebraic Riccati equation. In: Cendes, T. (Ed.) Developments in Reliable Computing, 105–119.Google Scholar
  24. 24.
    Luther, W., Otten, W., Traczinski, H. (1999) Verified calculation of the solution of discrete-time algebraic Riccati equation. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 411–421.Google Scholar
  25. 25.
    Luther, W., Traczinski, H. (1999) Error propagation control in MOBILE: extended basic mathematical objects and kinetostatic transmission elements. In: Kecskemethy, A., Schneider, M., Woernle, C. (Eds.) Advances in Multibody Systems and Mechatronics, TU Graz, 267–276.Google Scholar
  26. 26.
    Morales, D., Son, T. C. (1998) Interval Methods in Robot Navigation. Reliable Computing 4, 55–61.Google Scholar
  27. 27.
    Sherbrooke, E. C., Patrikalakis, N. M. (1993) Computation of the solution of nonlinear polynomial systems. Computer Aided Geometrie Design 10, 379–405.CrossRefGoogle Scholar
  28. 28.
    Simeon, B. (1995) MBSPACK - numerical integration software for constrained mechanical motion. Surv. Math. Ind., 169–202.Google Scholar
  29. 29.
    Sima, V. (1996) Algorithms for linear-quadratic optimization. Marcel Dekker, New York.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Wolfram Luther
    • 1
  • Eva Dyllong
    • 1
  • Daniela Fausten
    • 1
  • Werner Otten
    • 1
  • Holger Traczinski
    • 1
  1. 1.Gerhard-Mercator-University of DuisburgDuisburgGermany

Personalised recommendations