Advertisement

A Feasibility Result for Interval Gaussian Elimination Relying on Graph Structure

  • Andreas Frommer

Abstract

Let A = (a ij ) ∈ ||R nxn n x n be an interval matrix, i.e. each entry is a compact real interval. ‘Usual’ matrices A ∈ |R nxn n x n with real coefficients will be called point matrices in this paper, and a similar notation and terminology is adopted for vectors. Let b ∈ ||R nxn n be an interval vector. We are interested in computing an interval vector containing the solution set
$$\begin{array}{*{20}{r}} {S : = \{ x \in {\mathbb{R}^n}:there exist a point matrix A \in A } \\ {and a point vector b \in b such that Ax = b\} .} \end{array}$$

Keywords

Minimum Degree Gaussian Elimination Interval Arithmetic Feasibility Result Interval Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G. (1977): Über die Durchführbarkeit des Gaussehen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Computing Suppl. 1:15–19CrossRefGoogle Scholar
  2. Alefeld, G. and Herzberger, J. (1983): Introduction to Interval Computations. Academic Press, New YorkMATHGoogle Scholar
  3. Alefeld, G. and Mayer, G. (1993): The Cholesky method for interval data. Linear Algebra Appl. 194:161–182MathSciNetMATHCrossRefGoogle Scholar
  4. Barth, W. and Nuding, E. (1974): Optimale Lösung von Intervallgleichungssystemen. Computing 12:117–125MathSciNetMATHCrossRefGoogle Scholar
  5. Berman, A. and Plemmons, R. (1994): Nonnegative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics. SIAM, PhiladelphiaCrossRefGoogle Scholar
  6. Cormen, T., Leiserson, C. and Rivest, R. (1989): Introduction to Aigorithms. The MIT Press, Cambridge Mass.Google Scholar
  7. Duff, I., Erisman, A. and Reid, J. (1989): Direct Methods for Sparse Matrices. Oxford Science Publications, OxfordMATHGoogle Scholar
  8. Frommer, A. and Mayer, G. (1993a): Linear systems with Ω-diagonally dominant matrices and related ones. Linear Algebra Appl. 186:165–181MathSciNetMATHCrossRefGoogle Scholar
  9. Frommer, A. and Mayer, G. (1993b): A new criterion to guarantee the feasibility of the interval Gaussian algorithm. SIAM J. Matrix Anal. Appl. 14:408–419MathSciNetMATHCrossRefGoogle Scholar
  10. Frommer, A. and Weinberg, A. (1999): Verified error bounds for linear systems through the Lanczos process. Reliable Computing 5:255–267MathSciNetMATHCrossRefGoogle Scholar
  11. Mayer, G. (1991): Old and new aspects for the interval Gaussian algorithm. In: Kaucher, E., Markov, S. and Mayer, G. (eds.): Computer Arithmetic, Scientific Computation and Mathematical Modelling, Baltzer, Basel, pp. 329–349Google Scholar
  12. Reichmann, K. (1975): Ein hinreichendes Kriterium für die Durchführbarkeit des Intervall-Gauss-Algorithmus bei Intervall-Hessenberg-Matrizen ohne Pivotsuche. Z. Angew. Math. Mech. 59:373–379MathSciNetCrossRefGoogle Scholar
  13. Reichmann, K. (1979): Abbruch beim Intervall-Gauss-Algorithmus. Computing 22:335–361MathSciNetCrossRefGoogle Scholar
  14. Schüfer, U. (1996): Talk presented at the workshop on scientific computing, Riezlern, october 1996.Google Scholar
  15. Schüfer, U. (2000): The feasibility of the interval Gaussian algorithm for arrowhead matrices. Reliable Computing, to appearGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Andreas Frommer

There are no affiliations available

Personalised recommendations