# A Feasibility Result for Interval Gaussian Elimination Relying on Graph Structure

• Andreas Frommer
Conference paper

## Abstract

Let A = (a ij ) ∈ ||R nxn n x n be an interval matrix, i.e. each entry is a compact real interval. ‘Usual’ matrices A ∈ |R nxn n x n with real coefficients will be called point matrices in this paper, and a similar notation and terminology is adopted for vectors. Let b ∈ ||R nxn n be an interval vector. We are interested in computing an interval vector containing the solution set
$$\begin{array}{*{20}{r}} {S : = \{ x \in {\mathbb{R}^n}:there exist a point matrix A \in A } \\ {and a point vector b \in b such that Ax = b\} .} \end{array}$$

## Keywords

Minimum Degree Gaussian Elimination Interval Arithmetic Feasibility Result Interval Vector
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Alefeld, G. (1977): Über die Durchführbarkeit des Gaussehen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Computing Suppl. 1:15–19
2. Alefeld, G. and Herzberger, J. (1983): Introduction to Interval Computations. Academic Press, New York
3. Alefeld, G. and Mayer, G. (1993): The Cholesky method for interval data. Linear Algebra Appl. 194:161–182
4. Barth, W. and Nuding, E. (1974): Optimale Lösung von Intervallgleichungssystemen. Computing 12:117–125
5. Berman, A. and Plemmons, R. (1994): Nonnegative Matrices in the Mathematical Sciences, volume 9 of Classics in Applied Mathematics. SIAM, Philadelphia
6. Cormen, T., Leiserson, C. and Rivest, R. (1989): Introduction to Aigorithms. The MIT Press, Cambridge Mass.Google Scholar
7. Duff, I., Erisman, A. and Reid, J. (1989): Direct Methods for Sparse Matrices. Oxford Science Publications, Oxford
8. Frommer, A. and Mayer, G. (1993a): Linear systems with Ω-diagonally dominant matrices and related ones. Linear Algebra Appl. 186:165–181
9. Frommer, A. and Mayer, G. (1993b): A new criterion to guarantee the feasibility of the interval Gaussian algorithm. SIAM J. Matrix Anal. Appl. 14:408–419
10. Frommer, A. and Weinberg, A. (1999): Verified error bounds for linear systems through the Lanczos process. Reliable Computing 5:255–267
11. Mayer, G. (1991): Old and new aspects for the interval Gaussian algorithm. In: Kaucher, E., Markov, S. and Mayer, G. (eds.): Computer Arithmetic, Scientific Computation and Mathematical Modelling, Baltzer, Basel, pp. 329–349Google Scholar
12. Reichmann, K. (1975): Ein hinreichendes Kriterium für die Durchführbarkeit des Intervall-Gauss-Algorithmus bei Intervall-Hessenberg-Matrizen ohne Pivotsuche. Z. Angew. Math. Mech. 59:373–379
13. Reichmann, K. (1979): Abbruch beim Intervall-Gauss-Algorithmus. Computing 22:335–361
14. Schüfer, U. (1996): Talk presented at the workshop on scientific computing, Riezlern, october 1996.Google Scholar
15. Schüfer, U. (2000): The feasibility of the interval Gaussian algorithm for arrowhead matrices. Reliable Computing, to appearGoogle Scholar