Skip to main content

Modifications of the Oettli-Prager Theorem with Application to the Eigenvalue Problem

  • Conference paper
Symbolic Algebraic Methods and Verification Methods

Abstract

In this paper we consider the eigen pair set

$${E_\mathcal{P}}: = {\text{\{ (x,}}\lambda {\text{)|Ax = }}\lambda {\text{x,}} {\text{x}} \ne {\text{0,}} {\text{A}} \in {\text{[A],}} {\text{A}} {\text{with}} {\text{property}} \mathcal{P}{\text{\} ,}}$$
(1)

where [A] is a given real n x n interval matrix (cf. Alefeld and Herzberger (1983), e.g., for interval analysis) and \(\mathcal{P}\) is some fixed property such as symmetry, Toeplitz form, etc.. Before we study this set in greater detail we mention other ones which are related to it: When dealing with systems of linear equations

$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{A} x = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{b} , \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{A} \in {\mathbb{R}^{n \times n}}, \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{b} \in {\mathbb{R}^n}$$
(2)

(ℝn x n set of real n x n matrices, ℝn set of real vectors with n components) there sometimes occurs the problem of varying the input data \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{A} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{b} \) within certain tolerances and looking for the set S of the resulting solutions x*.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alefeld, G., Herzberger, J. (1983): Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  • Alefeld, G., Kreinovieh, V., Mayer, G. (1997): On the shape of the symmetric, persymmetric, and skew-symmetric solution set. SIAM J. Matrix Anal. Appl. 18: 693–705

    Article  MathSciNet  MATH  Google Scholar 

  • Alefeld, G., Kreinovieh, V., Mayer, G. (1998): The shape of the solution set of linear interval equations with dependent coeffieients. Math. Nachr. 192: 23–26

    Article  MathSciNet  MATH  Google Scholar 

  • Alefeld, G., Kreinovieh, V., Mayer, G. (1999): On the solution set of particular classes of linear systems. Submitted for publication.

    Google Scholar 

  • Alefeld, G., Mayer, G. (1995): On the symmetric and unsymmetric solution set of interval systems. SIAM J. Matrix Anal. Appl. 16: 1223–1240

    Article  MathSciNet  MATH  Google Scholar 

  • Beeck, H. (1972): über Struktur und Abschützungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10: 231–244

    Article  MathSciNet  MATH  Google Scholar 

  • Deif, A.S. (1991): The interval eigenvalue problem. Z. angew. Math. Mech. 71: 61–64

    Article  MathSciNet  MATH  Google Scholar 

  • Hartfiel, D.J. (1980): Concerning the solution set of Ax = b where PA ≤ ” and pbq. Numer. Math. 35: 355–359

    Article  MathSciNet  MATH  Google Scholar 

  • Jansson, C. (1991a): Rigorous sensitivity analysis for real symmetric matrices with uncertain data. In: Kaueher, E., Markov; S. M., Mayer, G. (eds.): Computer arithmetic, scientific computation and mathematical modelling. Baltzer, Basel, pp. 293–316

    Google Scholar 

  • Jansson, C. (1991b): Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in the right hand side. Computing 46: 265–274

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, T. (1985): Intervall-Input-Output-Rechnung. Mathematical Systems in Economics 101, Hain, Königstein/Ts.

    Google Scholar 

  • Oettli, W., Prager, W. (1964): Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6: 405–409

    Article  MathSciNet  MATH  Google Scholar 

  • Rohn, J. (1984): Interval linear systems. Freiburger Intervall-Berichte 84/7: 33–58

    Google Scholar 

  • Rump, S.M. (1994): Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.): Topics in validated computations. Elsevier, Amsterdam, pp. 63–135

    Google Scholar 

  • Schrijver, A. (1986): Theory of linear and integer programming. Wiley, New York

    MATH  Google Scholar 

  • Wilkinson, J.H. (1963): Rounding errors in algebraic processes. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Alefeld, G., Kreinovich, V., Mayer, G. (2001). Modifications of the Oettli-Prager Theorem with Application to the Eigenvalue Problem. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds) Symbolic Algebraic Methods and Verification Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6280-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6280-4_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83593-7

  • Online ISBN: 978-3-7091-6280-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics