Fast verification algorithms in Matlab

  • Siegfried M. Rump
Conference paper


For the toolbox INTLAB, entirely written in Matlab, new concepts have been developed for very fast execution of interval operations to be used together with the operator concept in Matlab. The new implementation of interval arithmetic is strongly based on the use of BLAS routines. The operator concept of Matlab offers the possibility of easy and user-friendly access to interval operations, real and complex interval elementary functions, automatic differentiation, slopes, multiple-precision interval arithmetic and much more. Some of the new concepts are presented. The paper focusses on implement at ion and mainly on performance issues.


Invariant Subspace Interval Arithmetic Standard Function Floating Point Automatic Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberth, O., Schaefer, M.J. (1992): Precise computation using range arithmetic, via C++. ACM Trans. Math. Softw. 18(4): 481–491MATHCrossRefGoogle Scholar
  2. Börsken, N.C. (1978): Komplexe Kreis-Standardfunktionen (Ph.D.), Freiburger Intervall-Ber. 78/2, Inst. f. Ange-wandte Mathematik, Universitüt FreiburgGoogle Scholar
  3. Braune, K.D. (1987): Hochgenaue Standardfunktionen für reelle und komplexe Punkte und Intervalle in beliebigen Gleitpunktrastern (Ph.D.). Universitüt KarlsruheGoogle Scholar
  4. Dongarra, J.J., Du Croz, J.J., Duff, I.S., Hammarling, S.J. (1990): A set of level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 16: 1–17MATHCrossRefGoogle Scholar
  5. ANSI/IEEE 754 (1985): Standard for Binary Floating-Point ArithmeticGoogle Scholar
  6. Knüppel, O. (1994): PROFIL/BIAS-A fast interval library. Computing 53: 277–287MathSciNetMATHCrossRefGoogle Scholar
  7. Krümer, W. (1987): Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit apriori Fehlerab-schützungen für beliebige Datenformate (Ph.D.). Universitüt KarlsruheGoogle Scholar
  8. MATLAB User’s Guide, Version 5 (1997): The Math Works Inc.Google Scholar
  9. Oishi, S. (1998): private communicationGoogle Scholar
  10. Rall, L.B. (1981): Automatic Differentiation: Techniques and Applications. Lecture notes in Computer Science 120. Springer Verlag, Berlin-Heidelberg-New YorkMATHCrossRefGoogle Scholar
  11. Rump, S.M. (1999a): Fast and parallel interval arithmetic. BIT 39(3):539–560MathSciNetCrossRefGoogle Scholar
  12. Rump, S.M. (1999b): INTLAB-INTerval LABoratory. In: Csendes, T. (ed.): Developements in Reliable Computing. Kluwer Academic Publishers, 77–104Google Scholar
  13. Rump, S.M. (2000): Computational Error Bounds for Multiple or Nearly Multiple Eigenvalues. LAA, to appearGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Siegfried M. Rump

There are no affiliations available

Personalised recommendations