Advertisement

Exact Computation with leda_real — Theory and Geometrie Applications

  • Kurt Mehlhorn
  • Stefan Schirra

Abstract

The number type leda_real provides exact computation for a subset of real algebraic numbers: Every integer is a leda_real, and leda_reals are closed under the basic arithmetic operations +, -, *, / and k-th root operations. leda_reals guarantee correct results in all comparison operations. The number type is available as part of the LEDA C++ software library of efficient data types and algorithms (LEDA, Mehlhorn and Nüher 2000). leda_reals provide user-friendly exact computation. All the internals are hidden to the user. A user can use leda_reals just like any buHt-in number type. The number type is successfully used to solve precision and robustness problems in geometric computing (Burnikel et al. 2000, Seel). It is particularly advantageous when used in combination with the computational geometry algorithms library CGAL.

Keywords

Voronoi Diagram Computational Geometry Number Type Algebraic Integer Geometric Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brönniman, H., Kettner, L., Schirra, S., Veltkamp, R. (1998): Applications of the generic programming paradigm in the design of CGAL. Research Report MPI-I-98-1-030, Max-Planck-Insitut für InformatikGoogle Scholar
  2. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S. (1999): Companion page to ‚Efficient exact geometric computation made easy‘. http:/www.mpi-sb.mpg.de/~stschirr/exact/made_easyGoogle Scholar
  3. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S. (2000): A strong and easily computable separation bound for arithmetic expressions involving radicals. Algorithmica 27:87–99MathSciNetMATHCrossRefGoogle Scholar
  4. Burnikel, C., Mehlhorn, K., Schirra, S. (1996): The LEDA class real number. Research Report MPI-I-96-1-001, Max-Planck-Institut für Informatik. A more recent documentation ofthe implementation is available at http://www.mpi-sb.mpg.de/~burnikel/reports/real.ps.gz.Google Scholar
  5. CGAL:http://www.cgal.orgGoogle Scholar
  6. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S. (1998): On the design of CGAL, the computational geometry algorithms library. Research Report MPI-I-98-1-007, Max-Planck-Institut für InformatikGoogle Scholar
  7. Fortune, S. (1993): Progress in computational geometry. In: Martin R., (ed.): Directions in Geometric Computing, pp. 81–128. Information Geometers Ltd.Google Scholar
  8. Hanniel, I., Halperin, D. (2000): Two-dimensional arrangements in CGAL and adaptive point location for parametrie curves. Manuscript. Tel-Aviv University, IsraelGoogle Scholar
  9. Hoffmann, C. (1989): The problem of accuracy and robustness in geometric computation. IEEE Computer 3:31–41CrossRefGoogle Scholar
  10. Karamcheti, V., Li, C., Pechtanski, I., Yap, C.K. (1999): A core library for robust numeric and geometric computation. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 351–359Google Scholar
  11. Keyser, J., Culver, T., Manocha, D., Krishnan, S. (1999): MAPC: A library for efficient and exact manipulation of algebraic points and curves. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 360–369. See also http://www.cs.unc.edu/~geom/MAPCGoogle Scholar
  12. LEDA:http://www.mpi-sb.mpg.de/LEDAGoogle Scholar
  13. Megiddo, N. (1983): Applying parallel eomputation algorithms in the design of serial algorithms. Journal of the ACM 30:852–865MathSciNetMATHCrossRefGoogle Scholar
  14. Mehlhorn, K, Nüher, S. (1994): The implementation of geometric algorithms. In: Proceedings of the 13th IFIP World Computer Congress, vol. 1, pp. 223–231. Elsevier Science B.V. North-Holland, AmsterdamGoogle Scholar
  15. Mehlhorn, K, Nüher, S. (2000):LEDA–A Platform for Combinatorial and Geometric Computing. Cambridge University PressGoogle Scholar
  16. Mnev, M.E. (1989): The universality theorems on the classification problem of configuration varieties and eonvex polytopes varieties. In: Topology and Geometry-Rohlin Seminar, Springer, pp. 527–544 (Lecture Notes Math., vol. 1346)MathSciNetCrossRefGoogle Scholar
  17. Overmars, M. (1996): Designing the computational geometry algorithms library CGAL. In Lin, M.C., Manocha, D., (eds.): Applied Computational Geometry: Towards Geometric Engineering (WACG96), Springer, pp. 53–58 (Lecture Notes in Computer Science, vol. 1148)Google Scholar
  18. Preparata, F.P., Shamos, M.I. (1985): Computational Geometry: An Introduction. SpringerGoogle Scholar
  19. Rege, A. (1996): APU User Manual–Version 2.0. http://www.cs.berkeley.edu/~rege/apu/apu.htmlGoogle Scholar
  20. Salowe, J. (1997): Parametric search. In: Goodman, J.E., Rourke, J.O. (eds.): Handbook of Discrete and Computational Geometry, pp. 683–698, CRC PressGoogle Scholar
  21. Schirra, S. (2000): Robustness and Precision Issues in Geometric Computation. In: Sack, J.-R., Urrutia, J. (eds.): Handbook of Computational Geometry, Elsevier, pp. 597–632Google Scholar
  22. Schirra, S. (1999): A case study on the cost of geometric eomputing. In: McGeoeh C.G, Goodrich M. (eds.): Algorithm Engineering and Experimentation (ALENEX’99), Springer pp. 156–176 (Lecture Notes in Computer Science, vol. 1619)Google Scholar
  23. Seel, M.: Abstract Voronoi Diagrams. http://www.mpi-sb.mpg.de/LEDA/friends/avd.htmlGoogle Scholar
  24. Schwerdt, J., Smid, M., Schirra, S. (1997): Computing the Minimum Diameter for Moving Points: An Exact Implementation using Parametric Search. In: Proc. of the 13th ACM Symp. on Computational Geometry, ACM Press, pp. 466–468.Google Scholar
  25. Yap, C.K (1997a): Towards exact geometric computation. Comput. Geom. Theory Appl., 7:3–23MathSciNetMATHCrossRefGoogle Scholar
  26. Yap, C.K (1997b): Robust geometric computation. In: Goodman, J.E., Rourke, J.O. (eds.): Handbook of Discrete and Computational Geometry, pp. 653–668, CRC PressGoogle Scholar
  27. Yap, C.K, Dubé, T. (1995): The exact eomputation paradigm. In: Du, D., Hwang, F. (eds.), Computing in Euclidean Geometry, 2nd edition, World Scientific Press, pp. 452–492Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Kurt Mehlhorn
  • Stefan Schirra

There are no affiliations available

Personalised recommendations