Advertisement

On the Shape of the Fixed Points of [f]([x]) = [A] [x] + [b]

  • G. Mayer
  • I. Warnke

Abstract

When solving linear systems of equations Cx = b (1) with a real n x n matrix C = (c ij ) and a real vector b with n components one often uses iterative methods - particularly when C is a large sparse matrix. Probably the most elementary iterative method can be derived from the socalled Richardson splitting C = I - A of C, where I is the identity matrix and A := I - C. This splitting induces the equivalent fixed point formulation x = Ax + b of (1) which leads to the iterative method x k+1 = Ax k + b.

Keywords

Unique Fixed Point Algebraic Solution Interval Vector Interval Matrix Point Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G., Herzberger, J. (1983): Introduction to Interval Computations. Academic Press, New YorkMATHGoogle Scholar
  2. Alefeld, G., Kreinovich, V., Mayer, G. (1997): On the Shape ofthe Symmetric, Persymmetric, and Skew-Symmetric Solution Set. SIAM J. Matrix Anal. Appl. 18: 693–705MathSciNetMATHCrossRefGoogle Scholar
  3. Barth, W., Nuding, E. (1974): Optimale Lösung von Intervallgleichungssystemen. Computing 12: 117–125MathSciNetMATHCrossRefGoogle Scholar
  4. Beeck, H. (1974): Zur scharfen Außenabschützung der Lösungsmenge bei linearen Intervallgleichungssystemen. Z. Angew. Math. Mech. 54, T208–T209MathSciNetMATHCrossRefGoogle Scholar
  5. Berman, A., Plemmons, R.J. (1994): Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics 9, SIAM, PhiladelphiaGoogle Scholar
  6. Hansen, E.R. (1992): Bounding the solution oflinear interval equations. SIAM J. Numer. Anal. 29: 1493–1503MathSciNetMATHCrossRefGoogle Scholar
  7. Hartfiel, D.J. (1980): Concerning the Solution Set of Ax = b where PAQ and pbq. Numer. Math. 35: 355–359MathSciNetMATHCrossRefGoogle Scholar
  8. Kuliseh, U. (1969): Grundzüge der Intervallrechnung. In: Laugwitz, L. (ed.): Überblicke Mathematik 2. Bibliographisches Institut, Mannheim, pp. 51–98Google Scholar
  9. Mayer, G., Rohn, J. (1998): On the Applicability of the Interval Gaussian Algorithm. Reliable Computing 4: 205–222MathSciNetMATHCrossRefGoogle Scholar
  10. Mayer, O. (1968): Über die in der Intervallrechnung auftretenden Rüume und einige Anwendungen. tPh.D. Thesis, Universitüt Karlsruhe, KarlsruheGoogle Scholar
  11. Neumaier, A. (1990): Interval Methods for Systems of Equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  12. Oettli, W., Prager, W. (1964): Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-hand Sides. Numer. Math. 6: 405–409MathSciNetMATHCrossRefGoogle Scholar
  13. Ratschek, H., Sauer, W. (1982): Linear Interval Equations. Computing 28: 105–115MathSciNetMATHCrossRefGoogle Scholar
  14. Rohn, J. (1993): Cheap and Tight Bounds: The Recent Result by E. Hansen Can Be Made More Efficient. Interval Computations 4: 13–21MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • G. Mayer
  • I. Warnke

There are no affiliations available

Personalised recommendations