Quasi Convex-Concave Extensions

  • Christian Jansson


Convexity and its generalizations have been considered in many publications during the last decades. In this paper we discuss the problem of bounding functions from below by quasiconvex functions and from above by quasiconcave functions. Moreover, applications für nonlinear systems and constrained global optimization problems are considered briefly.


Interval Arithmetic Affine Function Global Optimization Problem Convex Relaxation Convex Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Khayyal, F.A., Falk, J.E. (1983): Jointly Constrained Bieonvex Programming. Math. Oper. Res. 8(2):273–286MathSciNetMATHCrossRefGoogle Scholar
  2. Alefeld, G., Herzberger, J. (1983): Introduction to Interval Computations. Academic Press, New YorkMATHGoogle Scholar
  3. Avriel, M. (1976): Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., New JerseyMATHGoogle Scholar
  4. Avriel, M., Diewert, W.W., Schaible, S., Zang, I. (1988): Generalized Concavity. Plenum Press, New YorkMATHCrossRefGoogle Scholar
  5. Bulatov, V.P. (1977): Embedding Methods in Optimization Problems. Nauka, Novosibirsk (in Russian)Google Scholar
  6. Bulatov, V.P., Kasinkaya, L.I. (1982): Some Methods of Concave Minimization and Their Applications. In: Methods of Optimization and Their Applications. Nauka, Novosibirsk, pp. 71–80Google Scholar
  7. Cambini, A., Castagnoli, E., Martein, L., Mazzoleni, P., Schaible, S. (1989): Generalized Convexity and Fractional Programming with Economic Applications. Lecture Notes in Economics and Mathematical Systems, No. 345. Springer-Verlag, BerlinGoogle Scholar
  8. Dallwig, S., Neumaier, A., Schichl, H. (1997): GLOPT-a program for constrained global optimization. In: I.M. Bomze et al. (eds.): Developments in global optimization. Kluwer Academic Publishers, pp. 1936Google Scholar
  9. Emelichev, V.A., Kovalev, M.M. (1970): Solving Certain Concave Programming Problems by Successive Approximation I. Izvetya Akademii Nauka Bssr 6:27–34Google Scholar
  10. Falk, J.E., Hoffmann, K.L. (1976): A Successive Underestimation Method for Concave Minimization Problems. Math. Oper. Res. 1:251–259MATHCrossRefGoogle Scholar
  11. Falk, J.E., Soland, R.M. (1969): An Algorithm for Separable Nonconvex Programming Problems. Management Science 15:550–569MathSciNetMATHCrossRefGoogle Scholar
  12. Griewank, A., Corliss, G.F. (1991): Automatic Differentiation of Algorithms. Theory, Implementation, and Applications. SIAM, PhiladelphiaGoogle Scholar
  13. Hansen, E.R (1992): Global Optimization using Interval Analysis. Marcel Dekker, New YorkMATHGoogle Scholar
  14. Horst, R. (1976): An Algorithm for Nonconvex Programming Problems. Mathematical Programming 10:312–321MathSciNetMATHCrossRefGoogle Scholar
  15. Jansson, C. (1999a): Convex Relaxations for Global Constrained Optimization Problems. In: Keil, F., Mackens, W., Voss, H. (eds.): Scientific Computing in Chemical Engineering II. Springer Verlag, Berlin, pp. 322–329Google Scholar
  16. Jansson, C. (1999b): Quasiconvex Relaxations Based on Interval Arithmetic. Technical report 99.4, Inst. f. Informatik IU, TU Hamburg-HarburgGoogle Scholar
  17. Jansson, C. (2000): Convex-Concave Extensions. BIT 40(2):291–313MathSciNetMATHCrossRefGoogle Scholar
  18. Kearfott, R.B. (1996): Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  19. Krawczyk, R., Neumaier, A. (1985): Interval Slopes for Rational Functions and Associated Centered Forms. SIAM J. Numer. Anal. 22(3):604–616MathSciNetMATHCrossRefGoogle Scholar
  20. Moore, R.E. (1979): Methods and Applications of Interval Analysis. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  21. Neumaier, A. (1990): Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge University PressGoogle Scholar
  22. Neumaier, A. (1997): NOP-a compact input format for nonlinear optimization problems. In: I.M. Bomze et al. (eds.): Developments in global optimization. Kluwer Academic Publishers, pp. 1–18Google Scholar
  23. Ratschek, H., Rokne, J. (1984): Computer Methods for the Range of Functions. Halsted Press (Ellis Horwood Limited), New York (Chichester)MATHGoogle Scholar
  24. Ratschek, H., Rokne, J. (1988): New Computer Methods for Global Optimization. John Wiley & Sons (Ellis Horwood Limited), New York (Chichester)MATHGoogle Scholar
  25. Rump, S.M. (1996): Expansion and Estimation of the Range of Nonlinear Functions. Mathematics of Computation 65(216):1503–1512MathSciNetMATHCrossRefGoogle Scholar
  26. Rump, S.M. (1999): INTLAB-INTerval LABoratory. In: Tibor Csendes (ed.): Developements in Reliable Computing. Kluwer Academic Publishers, pp. 77–104Google Scholar
  27. Schaible, S. (1972): Quasi-convex Optimization in General Real Linear Spaces. Zeitschrift für Operations Research 16:205–213MathSciNetMATHGoogle Scholar
  28. Schaible, S. (1981): Quasiconvex, Pseudoconvex, and Strictly Pseudoconvex Quadratic Functions. Journal of Optimization Theory and Applications 35(3): 303–338MathSciNetMATHCrossRefGoogle Scholar
  29. Schnepper, C.A., Stadtherr, M.A. (1993): Application of a ParallelInterval Newton/Generalized Bisection Algorithm to Equation-Based Chemical Process Flowsheeting. Interval Computations 4:40–64MathSciNetGoogle Scholar
  30. Van Hentenryck, P., Michel, P., Deville, Y. (1997): Numerica: A Modelling Language for Global Optimization. MIT Press CambridgeGoogle Scholar
  31. Zamora, J.M., Grossmann, I.E. (1998): Continuous Global Optimization of Structured Process Systems Models. Computers Chem. Engineering 22(12):1749–1770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Christian Jansson

There are no affiliations available

Personalised recommendations