Advertisement

C4 Interpolatory Shape-Preserving Polynomial Splines of Variable Degree

  • N. C. Gabrielides
  • P. D. Kaklis
Part of the Computing book series (COMPUTING, volume 14)

Abstract

This paper introduces a new family of C4-continuous interpolatory variable-degree polynomial splines and investigates their interpolation and asymptotic properties as the segment degrees increase. The basic outcome of this investigation is an iterative algorithm for constructing C4 interpolants, which conform with the discrete convexity and torsion information contained in the associated polygonal interpolant. The performance of the algorithm, in particular the fairness effect of the achieved high parametric continuity, is tested and discussed for a planar and a spatial data set.

Keywords

Degree Distribution Interpolation Problem Polynomial Spline Linear Interpolant Quintic Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Asaturyan, S., Costantini, P., Manni, C.: Shape-preserving interpolating curves in n3: A local approach. In: Creating fair and shape-preserving curves and surfaces (Nowacki, H., Kaklis, P. D., eds.), pp. 99–108. Stuttgart: B.G. Teubner, 1998.Google Scholar
  2. [2]
    Costantini, P.: Shape-preserving interpolation with variable degree polynomial splines. In: Advanced course on FAIRSHAPE (Hoschek, J., Kaklis, P. D., eds.), pp. 87–114. Stuttgart: B.G. Teubner, 1996.CrossRefGoogle Scholar
  3. [3]
    Costantini, P.: Variable degree polynomial splines. In: Curves and surfaces with applications in CAGD (Le Méhauté, A., Rabut, C., Schumaker, L. L., eds.), pp. 85–94. Nashville: Vanderbilt University Press, 1997.Google Scholar
  4. [4]
    Costantini, P.: Curve and surface construction using variable degree polynomial splines. CAGD 17, 419–446 (2000).MathSciNetMATHGoogle Scholar
  5. [5]
    Eckhaus, W.: Asymptotic analysis of singular perturbations. Amsterdam- North-Holland, 1979.Google Scholar
  6. [6]
    Ginnis, A. I., Kaklis, P. D., Gabrielides, N. C.: Sectional-curvature preserving skinning surfaces with a 3D spine curve. In: Advanced topics in multivariate approximation (Fontanella, F., Jetter,K., Laurent, P.-J., eds.), pp. 113–123. Singapore: World Scientific, 1996.Google Scholar
  7. [7]
    Goodman, T. N. T., Ong, B. H.: Shape preserving interpolation by G2 curves in three dimensions. In: Curves and surfaces with applications in CAGD (Le Méhauté, A., Rabut, C., Schumaker, L.L., eds.), pp. 151–158. Nashville: Vanderbilt University Press, 1997.Google Scholar
  8. [8]
    Goodman, T. N. T., Ong, B. H.: Shape preserving interpolation by space curves. CAGD 15, 1–17 (1997).MathSciNetMATHGoogle Scholar
  9. [9]
    Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. Wellesley: AK Peters, 1993.Google Scholar
  10. [10]
    Kaklis, P. D., Ginnis, A. I.: Sectional-curvature preserving skinning surfaces. CAGD 13, 583–671 (1996).MathSciNetGoogle Scholar
  11. [11]
    Kaklis, P. D., Karavelas, M. I.: Shape-preserving interpolation in 083. IMA J. Numer. Anal. 17, 373–419 (1997).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Kaklis, P. D., Pandelis, D. G.: Convexity-preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 10, 223–234 (1990).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Kaklis, P. D., Sapidis, N. S.: Convexity-preserving interpolatory parametric splines of nonuniform polynomial degree. CAGD 12, 1–26 (1995).MathSciNetMATHGoogle Scholar
  14. [14]
    Messac, A., Sivanandan, A.: A new family of convex splines for data interpolation. CAGD 15, 39–59 (1997).MathSciNetMATHGoogle Scholar
  15. [15]
    Sapidis, N. S., Kaklis, P. D.: A hybrid method for shape-preserving interpolation with curvature-continuous quintic splines. Computing [Suppl.] 10, 285–301 (1995).CrossRefGoogle Scholar
  16. [16]
    Späth, H.: Exponential spline interpolation. Computing 4, 225–233 (1969).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • N. C. Gabrielides
    • 1
  • P. D. Kaklis
    • 1
  1. 1.Ship Design Laboratory Department of Naval Architecture and Marine EngineeringNational Technical University of AthensZografou, AthensGreece

Personalised recommendations