A Constraint-Based Method for Sculpting Free-Form Surfaces

  • P. Michalik
  • B. Bruderlin
Conference paper
Part of the Computing book series (COMPUTING, volume 14)


We discuss the problem of creating editable features for free-form surfaces. The manipulation tool is a user-defined curve on the surface. The surface automatically follows changes of the curve keeping a predefined set of constraints satisfied, specifically the incidence and tangency along one or several surface-curves. We review and update our approach presented earlier [18] and show how the curve-surface composition can be expressed as a linear transformation. In this context, we also describe the so-called “aliasing” problem caused by an incompatibility of a general curve on a surface with the rectangular mesh of degrees of freedom of a tensor product surface. The proposed solution is a local reparametrization in accordance with the feature.


Control Point Boundary Curve Original Surface Elimination Step Composition Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barghiel, C., Bartels, R., Forsey, D.: Pasting spline surfaces. pp. 31–40. Vanderbilt University Press, 1999.Google Scholar
  2. [2]
    Brüderlin, B., Döring, U., Klein, R., Michalik, P.: Declarative geometric modeling with constraints. In: Conference Proceedings CAD 2000 (Iwainsky, A., ed.), Berlin, March 2000. GFAI.Google Scholar
  3. [3]
    Celniker, G., Welch, W.: Linear constraints for deformable B-spline surfaces. Comput. Graphics 25 171–174 (1992).Google Scholar
  4. [4]
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. Comput. Graphics 24 187–196 (1990).CrossRefGoogle Scholar
  5. [5]
    Cox, M.: Algorithms for spline curves and surfaces. In: Fundamental developments of computer-aided geometric modeling (Piegl, L. A., ed.), pp. 51–75. New York: Academic Press, 1993.Google Scholar
  6. [6]
    DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition algorithm via blossoming. ACM Trans. Graphics 12, (2) (1993).Google Scholar
  7. [7]
    Doering, U., Michalik, P., Brüderlin, B.: A constraint-based shape modeling system. Geom. Constraint Solv. Appl. (1998).Google Scholar
  8. [8]
    Elber, G.: Users’ manual - IRIT, a solid modeling program. Technion Institute of Technology, Haifa, Israel, 1990–1996.Google Scholar
  9. [9]
    Elber, G.: Free form surface analysis using a hybrid of symbolic and numerical computations. PhD thesis, University of Utah, 1992.Google Scholar
  10. [10]
    Elber, G., Cohen, E.: Filleting and rounding using trimmed tensor product surfaces. In: Proceedings The Fourth ACM/IEEE symposium on Solid Modeling and Applications, pp. 201–216, May 1997.Google Scholar
  11. [11]
    Gordon, W. J.: Sculptured surface definition via blending-function methods. In: Fundamental developments of computer-aided geometric modeling (Piegl, L. A., ed.), pp. 117–134. New York: Academic Press, 1993.Google Scholar
  12. [12]
    Hayes, J.: Nag algorithms for the approximation of functions and data. In: Algorithms for approximation (Mason, J., Cox, M., eds.), pp. 653–668. Oxford: Clarendon Press, 1998.Google Scholar
  13. [13]
    Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. AK Peters, 1989.Google Scholar
  14. [14]
    Hsu, C., Alt, G., Huang, Z., Beier, E., Brüderlin, B.: A constraint-based manipulator toolset for editing 3D objects. In: Solid modeling 1997, Atlanta, Georgia, ACM Press, 1997.Google Scholar
  15. [15]
    Kielbasinsky, A., Schwetlick, H.: Numerische lineare Algebra, eine computerorientierte Einführung. Mathematik für Naturwissenshaft and Technik. Berlin: Deutscher Verlag der Wissenschaften, 1988.Google Scholar
  16. [16]
    LAPACK User’s guide release, 3rd ed, 1999.Google Scholar
  17. [17]
    Lazarus, F., Coquillart, S., Jancéne, P.: Axial deformations: An intuitive deformation technique. Comput. Aided Des. 26 607–613 (1994).MATHCrossRefGoogle Scholar
  18. [18]
    Michalik, P., Brüderlin, B.: Computing curve-surface incidence constraints efficiently. In: Proceedings Swiss Conference on CAD/CAM, February 1999.Google Scholar
  19. [19]
    Mtbrken, K.: Some identities for products and degree raising of splines. Construct. Approx. 7, 195–208 (1991).Google Scholar
  20. [20]
    Piegl, L., Tiller, W.: The Nurbs Book. Berlin Heidelberg New York Tokyo: Springer, 1995.MATHCrossRefGoogle Scholar
  21. [21]
    Ramshaw, L.: Blossoming: A connect-the-dots approach to splines. Technical Report 19, Digital System Research Center, Palo Alto CA, June 1987.Google Scholar
  22. [22]
    Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: Proceedings SIGGRAPH ’86, pp. 151–160, 1986.Google Scholar
  23. [23]
    Singh, K., Fiume, E.: Wires: A geometric deformation technique. In: Proceedings SIGGRAPH ’98, 1998.Google Scholar
  24. [24]
    Welch, W., Witkin, A.: Variational surface modeling. Comput. Graphics 26 157–165 (1992).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • P. Michalik
    • 1
  • B. Bruderlin
    • 1
  1. 1.Computer Graphics ProgramTechnical University of IlmenauIlmenauGermany

Personalised recommendations