β-Amyloid precursor protein, ETS-2 and collagen alpha 1 (VI) chain precursor, encoded on chromosome 21, are not overexpressed in fetal Down syndrome: further evidence against gene dosage effect

  • E. Engidawork
  • N. Balic
  • M. Fountoulakis
  • M. Dierssen
  • S. Greber-Platzer
  • G. Lubec


Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized clinically by somatic anomalies, mental retardation and precocious dementia. The phenotype of DS is thought to result from overexpression of a gene or genes located on the triplicated chromosome or chromosome region. Reports that challenge this notion, however, have been published. To add to this body of evidence, the expression of β-amyloid precursor protein (APP), ETS-2 and collagen α1 (VI) chain precursor, encoded on chromosome 21, was investigated in fetal brain by western blot and two-dimensional electrophoresis (2-DE). Western blot detected APP and ETS-2 that migrated at -75 and 50kDa, respectively. Subsequent densitometric analysis of APP and ETS-2 immuno-reactivity did not produce any significant change between controls and DS. Since the metabolic fate of APP determines the propensity of amyloid β production, the expression of the secreted forms of APP (sAPP) had been examined. Neither the expression of sAPPaα nor sAPPß showed any detectable changes among the two groups. Collagen α1(VI) chain precursor, a protein resolved as a single spot on 2D gel was identified by matrix associated laser desorption ionization mass spectroscopy. Quantitative analysis of this spot using the 2D Image Master software revealed a significant decrease in fetal DS (P < 0.01) compared to controls. Linear regression analysis did not show any correlation between protein levels and age. The current data suggest that overexpression per se can not fully explain the DS phenotype.


Down Syndrome Amyloid Precursor Protein Gene Dosage Effect Down Syndrome Patient Amyloid Precursor Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonarakis SE (1998) 10 years of genomics, chromosome 21, and Down syndrome. Genomics 51: 1–16PubMedCrossRefGoogle Scholar
  2. Arai Y, Suzuki A, Mizuguchi M, Takashima S (1997) Developmental and aging changes in the expression of amyloid precursor protein in Down syndrome brains. Brain Dev 19: 290–294PubMedCrossRefGoogle Scholar
  3. Baffico M, Perroni L, Rasore-Quartino A, Scartezzini P (1989) Expression of the human ETS-2 oncogene in normal fetal tissues and in the brain of a fetus with trisomy 21. Hum Genet 83: 295–296PubMedCrossRefGoogle Scholar
  4. Berndt P, Hobohm U, Langen H (1999) Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20: 3521–3526PubMedCrossRefGoogle Scholar
  5. Bhat NK, Fisher RJ, Fujiwara S, Ascione R, Papas TS (1987) Temporal and tissue specific expression of mouse ETS genes. Proc Natl Acad Sci USA 84: 3161–3165PubMedCrossRefGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  7. Brown JC, Timpl R (1995) The collagen superfamily. Int Arch Allerg Appl Immunol 107: 484–490CrossRefGoogle Scholar
  8. Chu M-L, Conway D, Pan T-C, Baldwin C, Mann K, Deutzmann R, Timpl R (1988) Amino acid sequence of the triple helical domain of the human collagen type VI. J Biol Chem 263: 18601–18606PubMedGoogle Scholar
  9. de Haan JB, Wolvetang EJ, Cristiano F, Iannello R, Bladier C, Keiner MJ, Kola I (1997) Reactive oxygen species and their contribution to pathology in Down syndrome. Adv Pharmacol 38: 379–402PubMedCrossRefGoogle Scholar
  10. Epstein CJ (1995) Down Syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn, vol. I. McGraw Hill,New York, pp 749–794Google Scholar
  11. Fountoulakis M, Langen H (1997) Identification of proteins by matrix assisted laser desorption ionization mass spectrometry following in-gel digestion in low salt, nonvolatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156PubMedCrossRefGoogle Scholar
  12. Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J (1983) Electron microscopical approach to a structural model of intima collagen. Biochem J 211: 303–311PubMedGoogle Scholar
  13. Golaz J, Charnay Y, Vallet P, Bouras C (1991) Alzheimer’s disease and Down syndrome.Some recent etiopathogenic data. Encephale 17: 29–31PubMedGoogle Scholar
  14. Greber-Platzer S, Schatzmann-Turhani D, Wollenek G, Lubec G (1998) Evidence against the current hypothesis of “gene dosage effects” of trisomy 21: ETS-2, encoded on chromosome 21 is not overexpressed in hearts of patients with Down syndrome.Biochem Biophys Res Commun 254: 395–399CrossRefGoogle Scholar
  15. Greber-Platzer S, Schatzmann-Turhani D, Cairns D, Balcz B, Lubec G (1999) Expression of the transcription factor ETS-2 in brain of patients with Down syndrome-evidence against the overexpression gene hypothesis. J Neural Transm [Suppl] 57: 269–281Google Scholar
  16. Griffin WST, Sheng JG, McKenzie LE, Royston MC, Gentleman SM, Brumback RA,Cork LC, Del Bigio MR, Roberts GW, Mrak RE (1998) Life-long expression of S-100ß in Down’s syndrome: implication for Alzheimer pathogenesis. Neurobiol Aging 19: 401–405PubMedCrossRefGoogle Scholar
  17. Hatori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park H-S et al (2000) The DNA sequence of human chromosome 21. Nature 405: 311–319CrossRefGoogle Scholar
  18. Howlett DR, James S, Allsop D, Roberts GW (1995) The biology and molecular pathology of β.amyloid protein. In: Dawbarn D, Allen SJ (eds) Neurobiology of Alzheimer’s disease. BIOS Scientific Publishers, Oxford, pp 9–49Google Scholar
  19. Jander R, Raterberg J, Glanville RW (1983) Further characterization of the three polypeptide chains of bovine and human short-chain collagen (intima collagen). Eur J Biochem 133: 39–46PubMedCrossRefGoogle Scholar
  20. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grezeschik K-H,Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s amyloid A4 protein resembles a cell surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  21. Klewer SE, Krob SL, Kolker SJ, Kitten GT (1998) Expression of type VI collagen in the developing mouse heart. Dev Dyn 211: 248–255PubMedCrossRefGoogle Scholar
  22. Knupp C, Squire JM (2001) A new twist in the collagen story - the type VI segmented supercoil. EMBO J 20: 372–376PubMedCrossRefGoogle Scholar
  23. Lamande SR, Shields KA, Kornberg AJ, Shield LK, Bateman JF (1999) Bethlem myopathy and engineered collagen VI triple helical deletion prevent intracellular multimer assembly and protein secretion. J Biol Chem 274: 21817–21822PubMedCrossRefGoogle Scholar
  24. Langen H, Röder D, Juranville JF, Fountoulakis M (1997) Effect of the protein application mode and the acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090PubMedCrossRefGoogle Scholar
  25. Levine JM, Nishiyama A (1996) The NG-2 chondrotin sulfate proteoglycan: a multi functional proteoglycan associated with immature cells. Perspect Dev Biol 3: 545–559Google Scholar
  26. Lubec G, Labudova O, Cairns N, Fountoulakis M (1999) Increased glyceraldehyde-3-phosphate dehydrogenase levels in brain of patients with Down syndrome. Neurosci Lett 260: 141–145PubMedCrossRefGoogle Scholar
  27. Maraoulakou IG, Papas TS, Green JE (1994) Differential expression of ETS-1 and ETS-2 genes during murine embriogenesis. Oncogene 9: 1551–1565Google Scholar
  28. Mills J, Reiner PB (1999) Regulation of amyloid precursor protein cleavage. J Neurochem 72: 443–460PubMedCrossRefGoogle Scholar
  29. Neve RL, Finch EA, Dawes LR (1988) Expression of the Alzheimer’s amyloid precursor gene transcript in the human brain. Neuron 1: 669–677PubMedCrossRefGoogle Scholar
  30. Neve RL, McPhie DL, Chen Y (2000) Alzheimer’s disease: a dysfunction of the amyloid precursor protein. Brain Res 886: 54–66PubMedCrossRefGoogle Scholar
  31. Oyama F, Cairns NJ, Shaimada H, Oyama R, Titani K, Inara Y (1994) Down’s syndrome: upregulation of β-amyloid protein precursor and tau mRNAs and their defective coordination. J Neurochem 62: 1062–1066PubMedCrossRefGoogle Scholar
  32. Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D’Adamio L (1999) Alternative non-secretase processing of Alzheimer’s β-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274: 21011–21016PubMedCrossRefGoogle Scholar
  33. Pritchard MA, Kola I (1999) The “gene dosage effect” versus the “amplified developmental instability” hypothesis in Down syndrome. J Neural Transm [Suppl] 57: 293–303Google Scholar
  34. Shapiro BL (1983) Down syndrome - a disruption of homeostasis. Am J Med Genet 14: 241–269PubMedCrossRefGoogle Scholar
  35. Shapiro BL (1999) The Down syndrome critical region. J Neural Transm [Suppl] 57: 41–60Google Scholar
  36. Sumarsono SH, Wilson TJ, Tymms MJ, Venter D, Corrick CM, Kola R, Lahoud M, Papas TS, Seth A, Kola I (1996) Ets transgenic mice develop skeletal abnormalities analogous to those found in Down syndrome. Nature 379: 534–537PubMedCrossRefGoogle Scholar
  37. Teller JK, Russo C, DeBusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann DMA, Tabaton M, Gambetti P (1996) Presence of soluble amyloid β-peptide precedes amyloid plaque formation in Down’s syndrome. Nature Med 2: 93–95PubMedCrossRefGoogle Scholar
  38. Trüeb B, Bornstein P (1984) Characterization of the precursor form of type VI collagen. J Biol Chem 259: 8597–8604PubMedGoogle Scholar
  39. von Kaisenberg CS, Brand-Saberi B, Christ B, Vallian S, Farzaneh F, Nicolaides KH (1998) Collagen type VI expression in the skin of trisomy 21 fetuses. Obstet Gynecol 91: 319–323CrossRefGoogle Scholar
  40. Wasco W, Tanzi RE (1995) Molecular genetics of amyloid and apolipoprotein E in Alzheimer’s disease. In: Dawbarn D, Allen SJ (eds) Neurobiology of Alzheimer’s disease. BIOS Scientific Publishers, Oxford, pp 51–76Google Scholar
  41. Wasylyk B, Hahn SL, Giovane A (1993) The ETS family transcription factors. Eur J Biochem 211: 7–18PubMedCrossRefGoogle Scholar
  42. Weil D, Mattei MG, Passage E, N’Guyen VC, Pribula-Conway D, Mann K, Deutzmann R, Timpl R, Chu ML (1988) Cloning and chromosomal localization of human genes encoding the three chains of type VI collagen. Am J Hum Genet 42: 435–445PubMedGoogle Scholar
  43. Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down syndrome. Ann Neurol 17: 278–282PubMedCrossRefGoogle Scholar
  44. Yoshikai S-I, Sasaki H, Doh-ura K, Furuya H, Sakaki Y (1990) Genomic organization of the human amyloid beta protein precursor gene. Gene 87: 257–263PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2001

Authors and Affiliations

  • E. Engidawork
    • 1
  • N. Balic
    • 2
  • M. Fountoulakis
    • 3
  • M. Dierssen
    • 4
  • S. Greber-Platzer
    • 1
  • G. Lubec
    • 1
  1. 1.Department of PediatricsUniversity of ViennaViennaAustria
  2. 2.Institute of Medical and Chemical Laboratory Diagnostics, AKHUniversity of ViennaViennaAustria
  3. 3.F. Hoffman-La RocheBaselSwitzerland
  4. 4.Medical and Molecular Genetics CenterIRO Hospital Duran i ReynalsBarcelonaSpain

Personalised recommendations