Functional genomics of Down syndrome: a multidisciplinary approach

  • M. Dierssen
  • E. Martí
  • C. Pucharcós
  • V. Fotaki
  • X. Altafaj
  • K. Casas
  • A. Solans
  • M. L. Arbonés
  • C. Fillat
  • X. Estivill


The availability of the DNA sequence of human chromosome 21 (HSA21) is a landmark contribution that will have an immediate impact on the study of the role of specific genes to Down syndrome (DS). Trisomy 21, full or partial, is a major cause of mental retardation and other phenotypic abnormalities, collectively known as Down syndrome (DS), a disorder affecting 1 in 700 births. The identification of genes on HSA21 and the elucidation of the function of the proteins encoded by these genes have been a major challenge for the human genome project and for research in DS. Over 100 of the estimated 300–500 genes of HSA21 have been identified, but the function of most remains largely unknown. It is believed that the overexpression of an unknown number of HSA21 genes is directly or indirectly responsible for the mental retardation and the other clinical features of DS. For this reason, HSA21 genes that are expressed in tissues affected in DS patients are of special interest.


Down Syndrome Down Syndrome Patient Ts65Dn Mouse Skeletal Muscle Hypertrophy Eps15 Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195PubMedCrossRefGoogle Scholar
  2. Aramburu J, Garcia-Cózar F, Raghavan A, Okamura H, Rao A, Hogan PG (1998) Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cal 1: 627–637CrossRefGoogle Scholar
  3. Barrett AJ, Rawlings ND (1995) Families and clans of serine peptidases. Arch Biochem Biophys 318: 247–250PubMedCrossRefGoogle Scholar
  4. Benmerah A, Begue B, Dautry-Varsat A, Cerf-Bensussan N (1996) The ear of alpha-adaption interacts with the COOH-terminal domain of the Eps 15 protein. J Biol Chem 271: 12111–12116PubMedCrossRefGoogle Scholar
  5. Becker W, Joost HG (1999) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucl Acid Res Mol Biol 62: 1–17CrossRefGoogle Scholar
  6. Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273: 27765–27767PubMedCrossRefGoogle Scholar
  7. Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV, Synder SH (1995) Calcineurin associated with the inositol 1, 4, 5-triphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83: 463–472PubMedCrossRefGoogle Scholar
  8. Carrión AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398: 80–84PubMedCrossRefGoogle Scholar
  9. Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281: 1505–1509PubMedCrossRefGoogle Scholar
  10. Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, Di Fiore PP, De Camilli P (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394: 793–797PubMedCrossRefGoogle Scholar
  11. Chin ER, Olson EN, Richardso JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499–2509PubMedCrossRefGoogle Scholar
  12. Costa AC, Walsh K, Davisson MT (1999) Motor dysfunction in a mouse model for Down syndrome. Physiol Behav 68: 211–220PubMedCrossRefGoogle Scholar
  13. Crabtree GR (1999) Generic signals and specific outcomes: signalling through Ca2+, calcineurin, and NF-AT. Cell 96: 611–614PubMedCrossRefGoogle Scholar
  14. Crnic LS, Pennington BF (2000) Down syndrome: neuropsychology and animal models. Progr Infancy Res 1: 69–111Google Scholar
  15. Cremona O, de Camilli P (1997) Synaptic vessicle endocytosis. Curr Opin Neurobiol 7: 323–330PubMedCrossRefGoogle Scholar
  16. Davisson MT, Schmidt C, Akeson EC (1990) Segmental trisomy for murine chromosome 16: a new system for studying Down syndrome. In: Patterson D, Epstein CJ (eds) Molecular genetics of chromosome 21 and Down syndrome. Wiley-Liss, New York, pp 263–280Google Scholar
  17. David C, McPherson PS, Mundigl O, de Camilli P (1996) A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci USA 93: 331–335PubMedCrossRefGoogle Scholar
  18. Davisson MT, Costa ACS (1999) Mouse models of Down syndrome. In: Popko B (ed) Mouse models in the study of genetic neurological disorders, vol 9. Plenum Press, New York, pp 297–327 (Adv Neurochem)CrossRefGoogle Scholar
  19. De la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, et al (1998) Role of NF-Atc transcription factor in morphogenesis cardiac valvles and septum. Nature 392: 182–186PubMedCrossRefGoogle Scholar
  20. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390PubMedCrossRefGoogle Scholar
  21. Dierssen M, Vallina IF, Baamonde C, Garcia-Calatayud S, Lumbreras MA, Florez J (1997) Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome. Brain Res 749: 238–244PubMedCrossRefGoogle Scholar
  22. Epstein CJ (1995) The metabolic and molecular basis of inherited disease. In: Scriver CR, Beaudet AL., Sly WS, Valle D (eds) Down syndrome, vol 1, 7th edn. Mac Graw-Hill, New YorkGoogle Scholar
  23. Escorihuela RM, Fernández-Teruel A, Vallina IF, Baamonde C, Lumbreras M, Diersen M, Tobena A, Florez J (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199: 143–146PubMedCrossRefGoogle Scholar
  24. Escorihuela RM, Vallina IF, Martínez-Cué C, Baamonde C, Dierssen MM, Tobena A, Flórez J, Fernández-Teruel A (1998) Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 247: 171–174PubMedCrossRefGoogle Scholar
  25. Fazioli F, Minichiello L, Matoskova B, Wong WT, Di Fiore PP (1993) epsl5, a novel tyrosine kinase substrate, exhibits transforming activity. Mol Cell Biol 13: 5814– 5828PubMedGoogle Scholar
  26. Flórez J (1992) Neurologic abnormalities. In: Pueschel SM, Pueschel JK (eds) Biomedical concerns in persons with Down syndrome. Paul H Brookes, Baltimore, pp 159–173Google Scholar
  27. Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivill X (1995) A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Mol Gen 4: 1935–1944PubMedCrossRefGoogle Scholar
  28. Fuentes JJ, Pritchard MA, Estivill X (1997) Genomic organization, alternative splizing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44: 358–361PubMedCrossRefGoogle Scholar
  29. Fuentes JJ, Genescá L, Kingsbury TJ, Cunningham KW, Pérez-Riba M, Estivill X, de la Luna S (2000) DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signalling pathways. Hum Mol Gen 9: 1681–1690PubMedCrossRefGoogle Scholar
  30. Gardiner K (1997) Clonability and gene distribution on the human chromosome 21: reflections of junk DNA content? Gene 205: 39–46PubMedCrossRefGoogle Scholar
  31. Genome sequence of the nematode C. elegans: a platform for investigating biology (1998) The C. elegans sequencing. Science 282: 2012–2018CrossRefGoogle Scholar
  32. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6,000 genes. Science 274, 546: 563–567Google Scholar
  33. Granholm AC, Sanders LA, Crnic LS (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp Neurol 161: 647–663PubMedCrossRefGoogle Scholar
  34. Guimerà J, Casas C, Pucharcos C, Solans A, Doménech A, Planas AM, Ashley J, Lovett M, Estivill X, Pritchard MA (1996) A human homologue of human minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Gen 5: 1305–1310PubMedCrossRefGoogle Scholar
  35. Guimerà J, Casas C, Estivill X, Pritchard M (1999) Human minibrain homologue (MNBH/DYRK1): characterization, alternative splizing, differential tissue expression, and overexpression in Down syndrome. Genomics 57: 407–418PubMedCrossRefGoogle Scholar
  36. Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonorakis SE (1998) Two isoforms of a human intersection (ITSN) protein are produced by brain-specific alternative splizing in a stop codon. Genomics 53: 369–376PubMedCrossRefGoogle Scholar
  37. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374: 190–192PubMedCrossRefGoogle Scholar
  38. Ho IC, Kim JH, Eooney JW, Spiegelman BM, Glimcher LH (1998) A potential role for the nuclear factor activated T cell family of transcriptional regulatory proteins in adipogenesis. Proc Natl Acad Sci USA 95: 15537–15541PubMedCrossRefGoogle Scholar
  39. Holtzman DM, Santucci D, Kilbridge J, Chua-Couzens J, Fontana DJ, Daniels SE, Johnson RM, Chen K, Sun Y, Carlson E, Alleva E, Epstein CJ, Mobley WC (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 93: 13333–13338PubMedCrossRefGoogle Scholar
  40. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14: 419–427PubMedCrossRefGoogle Scholar
  41. Insausti AM, Megias M, Crespo D, Cruz-Orive LM, Dierssen M, Vallina IF, Insausti R, Florez J, Vallina TF (1998) Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of Down syndrome. Neurosci Lett 253: 175–178PubMedCrossRefGoogle Scholar
  42. Kentrup H, Becker W, Heukelbach J, Wilmes A, Schurmann A, Huppertz C, Kaniulainen H, Joost HG (1996) Dyrk, a dual specificity protein kinaase with unic structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271: 3488–3495PubMedCrossRefGoogle Scholar
  43. Kirchhausen T, Bonifacino JS, Riezman H (1997) Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol 4: 488–495CrossRefGoogle Scholar
  44. Klauck TM, Faux MC, Labudda K, Langeberg LK, Jaken S, Scott JD (1996) Coordination of three signaling enzimes by AKAP79, a mammalian scaffold protein. Science 271: 1589–1592PubMedCrossRefGoogle Scholar
  45. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase calcineurin. J Biol Chem 273: 13367–13370PubMedCrossRefGoogle Scholar
  46. Kolb B, Gibb R (1990) Anatomical correlates of behavioral change after neonatal prefrontal lesions in rats. Prog Brain Res 85: 241–255PubMedCrossRefGoogle Scholar
  47. Kopp CB, Krakow JB, Johnson KL (1983) Strategy production by Down syndrome children. Am J Ment Defic 88: 164–169PubMedGoogle Scholar
  48. Kronenberg JR, Kalousek DK, Anneren G, Pulst S-M, Hall JG, Epstein CJ, Cox DR (1991) Delection of chromosome 21 and intelligence: molecular definition of the lesion. Hum Genet 87: 112–118CrossRefGoogle Scholar
  49. Kurnit DM, Aldrige JF, Matsuoka R, Mathysse S (1985) Increased adhesiveness of trisomy 21 cells and atrioventricular calnal malformations in Down syndrome: a stochastic model. Am J Med Genet 20: 385–399PubMedCrossRefGoogle Scholar
  50. Kurt MA, Davies DC, Kidd M, Dierssen M, Florez J (2000) Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Res 858: 191–197PubMedCrossRefGoogle Scholar
  51. Lai MM, Burnett PE, Wolosker H, Blackshaw S, Synder SH (1998) Cain, a novel physiologic protein inhibitor of calcineurin. J Biol Chem 273: 18325–18331PubMedCrossRefGoogle Scholar
  52. Lin X, Sikkink RA, Rusnak F, Barber DL (1999) Inhibition of calcineurin phosphatase activity by calcineurin B homologous protein. J Biol Chem 274: 36125–36131PubMedCrossRefGoogle Scholar
  53. Marsh M, McMahon HT (1999) The structural era of endocytosis. Science 285: 215–220PubMedCrossRefGoogle Scholar
  54. Martinez-Cue C, Baamonde C, Lumbreras MA, Vallina IF, Dierssen M, Florez J (1999) A murine model for Down syndrome shows reduced responsiveness to pain. Neuroreport 10: 1119–1122PubMedCrossRefGoogle Scholar
  55. Miskin JE, Abrams CC, Goatley LC, Dixon LK (1998) A viral mechanism for inhibition of cellular phosphatase calcineurin. Science 281: 562–565PubMedCrossRefGoogle Scholar
  56. Mizayaki T, Kanou Y, Murata Y, Ohmori S, Niwa T, Maeda K, Yamamura H, Seo H (1996) Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J Biol Chem 271: 14567–14571CrossRefGoogle Scholar
  57. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineuri-dependent pathway for cardiac hypertrophy. Cell 93:215–228PubMedCrossRefGoogle Scholar
  58. Musaro A, McCullagh JK, Naya FJ, Olson EN, Rosenthal N (1999) IGF-1 induces skeletal myocite hypertrophy through calcineurin in association with GATA-2 and NF-Atcl. Nature 400: 581–585PubMedCrossRefGoogle Scholar
  59. Okamoto M, Schoch S, Sudhof TC (1999) EHSHl/intersection, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 274: 18446–18454PubMedCrossRefGoogle Scholar
  60. Owen DJ, Vallis Y, Noble ME, Hunter JB, Dafforn TR, Evans PR, McMahon HT (1999) A structural explanation for the binding of multiple ligands by the alpha-adaption appendage domain. Cell 97: 805–815PubMedCrossRefGoogle Scholar
  61. Pishvaee B, Payne GS (1998) Clathrin coats-threads laid bare. Cell 95: 443–446PubMedCrossRefGoogle Scholar
  62. Pritchard MA, Kola I (1999) The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. J Neural Transm [Suppl] 57: 293–303Google Scholar
  63. Pucharcos C, Fuentes JJ, Casas C, de la Luna S, Alcántara S, Arbonés ML, Soriano E, Estivill X, Pitchard M (1999) Alu-Splice cloning of human Intersection (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. Eur J Hum Genet 7: 704–712PubMedCrossRefGoogle Scholar
  64. Pucharcos C, Estivill X, de la Luna S (2000) Intersection 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett 478: 43–51PubMedCrossRefGoogle Scholar
  65. Pueschel SM (1992) Phenotypic characteristics. In: Pueschel SM, Pueschel JK (eds) Biomedical concerns in persons with Down syndrome. Paul H. Brookes, Baltimore, pp 1–12Google Scholar
  66. Pueschel SM, Bernier JC, Pezullo JC (1991) Behavioral observations in children with Down’s syndrome. J Ment Defic Res 35: 502–511PubMedGoogle Scholar
  67. Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, De la Brousse FC, Hoey T, Mickanin C, Baldwin HS, Glimcher LH (1998) The transcription factor, NF-ATc is essential for cardiac valve formation. Nature 392: 186–189PubMedCrossRefGoogle Scholar
  68. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Ann Rev Immunol 15: 707–747CrossRefGoogle Scholar
  69. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Avisson MT (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11: 177–184PubMedCrossRefGoogle Scholar
  70. Roos J, Kelly RB (1998) Dapl60, a neural-specific Epsl5 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J Biol Chem 273: 19108–19119PubMedCrossRefGoogle Scholar
  71. Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) TslCje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95: 6256–6261PubMedCrossRefGoogle Scholar
  72. Shapiro BL (1999) The Down syndrome critical region. J Neural Transm [Suppl] 57: 41–60Google Scholar
  73. Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400: 576–581PubMedCrossRefGoogle Scholar
  74. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Epsl5. EMBO J 18: 1159–1171PubMedCrossRefGoogle Scholar
  75. Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galasko D, Thal LJ, Lieberburg I, Schenk DB (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 361: 260–263PubMedCrossRefGoogle Scholar
  76. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66: 511–548PubMedCrossRefGoogle Scholar
  77. Schmid SL, McNiven MA, De Camilli P (1998) Dynamin and its partners: a progress report. Curr Opin Cell Biol 10: 504–512PubMedCrossRefGoogle Scholar
  78. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O’Dell TJ, Fung J, Weier HG, Cheng J, Rubin EM (1997) Functional screening of 2Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16: 28PubMedCrossRefGoogle Scholar
  79. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human. Nature 402: 537–540PubMedCrossRefGoogle Scholar
  80. Slavov D, Hattori M, Sakaki Y, Rosenthal A, Shimizu N, Minoshima S, Kudoh J, Yaspo ML, Ramser J, Reinhardt R, Reimer C, Clancy K, Rynditch A, Gardiner K (2000) Criteria for gene identification and features of genome organization: analysis of 6.5 Mb of DNA sequence from human chromosome 21. Gene 247: 215–232PubMedCrossRefGoogle Scholar
  81. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O’Dell TJ, Fung J, Weier HU, Cheng JF, Rubin EM (1997) Functional screening of 2Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16: 28–36PubMedCrossRefGoogle Scholar
  82. Solans A, Estivill X, de La Luna S (2000) A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein beta-secretase. Cytogenet Cell Genet 89: 177–184PubMedCrossRefGoogle Scholar
  83. Stowell MH, Marks B, Wigge P, McMahon HT (1999) Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol 1: 27–32PubMedCrossRefGoogle Scholar
  84. Sun L, Woun HD, Loh C, Stolow M, He W, Liu JO (1998) Abin 1, a negative regulator for calcineurin signalling in T lymphocytes. Immunity 8: 703–711PubMedCrossRefGoogle Scholar
  85. Sutherland ML, Williams SH, Abedi R, Overbeek PA, Pfaffinger PJ, Noebels JL (1999) Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc Natl Acad Sci USA 96: 2451–2455PubMedCrossRefGoogle Scholar
  86. Tejedor F, Zhu XR, Kaltenbach E, Ackermann A, Baumann A, Canal I, Heisenberg M, Fischbach KF, Pongs O (1995) Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14: 287–301PubMedCrossRefGoogle Scholar
  87. Tong XK, Hussain NK, Heuvel E, Kurakin A, Abi-Jaude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, Mc Pherson PS (2000) The endocytic protein intersection is a major binding partner for the Ras exchange factor mSosl in rat brain. EMBO J 19: 1263–1271PubMedCrossRefGoogle Scholar
  88. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741PubMedCrossRefGoogle Scholar
  89. Wang LH, Sudhof TC, Anderson RG (1995) The appendage domain of alpha-adaption is a high affinity binding site for dynamin. J Biol Chem 270: 10079–10083PubMedCrossRefGoogle Scholar
  90. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8: 2003–2015PubMedGoogle Scholar
  91. Wiltshire T, Pletcher M, Cole SE, Villanueva M, Birren B, Lehoczky J, Dewar K, Reeves RH (1999) Perfect conserved linkage across the entire mouse chromosome 10 region homologous to human chromosome 21. Genome Res 9: 1214–1222PubMedCrossRefGoogle Scholar
  92. Xu H, Wei H, Tassone F, Graw S, Gardiner K, Weissman SM (1995) A search for genes from the dark band regions of human chromosome 21. Genomics 27: 1–8PubMedCrossRefGoogle Scholar
  93. Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK (1998) Intersection, a novel adaptor protein with two Epsl5 homology and five Src homology 3 domains. J Biol Chem 273: 31401–31407PubMedCrossRefGoogle Scholar
  94. Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR (1998) DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet 7: 227–237PubMedCrossRefGoogle Scholar
  95. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402: 533–537PubMedCrossRefGoogle Scholar
  96. Ziai MR, Sangameswaran L, Hempstead JL Danho W, Morgan JI (1988) An immunochemical analysis of the distribution of a brain-specific polypeptide, PEP-19. J Neurochem 51: 1771–1776PubMedCrossRefGoogle Scholar
  97. Zheng B, Sage M, Sheppeard EA, Jurecic V, Bradley A (2000) Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol Cell Biol 20: 648–655PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2001

Authors and Affiliations

  • M. Dierssen
    • 1
  • E. Martí
    • 1
  • C. Pucharcós
    • 1
  • V. Fotaki
    • 1
  • X. Altafaj
    • 1
  • K. Casas
    • 1
  • A. Solans
    • 1
  • M. L. Arbonés
    • 1
  • C. Fillat
    • 1
  • X. Estivill
    • 1
  1. 1.Down Syndrome Research Group, Medical and Molecular Genetics Center-IROHospital Duran i Reynals, L’Hospitalet de LlobregatBarcelonaSpain

Personalised recommendations