Skip to main content

Selective upregulation of the ubiquitin-proteasome proteolytic pathway proteins, proteasome zeta chain and isopeptidase T in fetal Down syndrome

  • Chapter
Protein Expression in Down Syndrome Brain

Summary

The ubiquitin-proteasome proteolytic pathway is involved in an important non-lysosomal proteolytic pathway that is responsible for the highly selective turnover of cellular proteins both under basal metabolic conditions as well as stress. Protein degradation by this pathway is attributed to the 20S proteasome that forms the catalytic core of the complex. Recently there has been increasing interest in the proteasome because of its possible role in neuron degeneration and death. Fetal Down syndrome (DS) neurons were demonstrated to degenerate and undergo apoptosis in vitro. We therefore investigated the expression of different proteins involved in this degradative pathway, including subunits of the 20S proteasome, ubiquitinating and deubiquitinating enzymes, and regulatory subunits of the 26S proteasome in control and DS fetal brains by two-dimensional electrophoresis (2-DE). After 2-DE, approximately 389 protein spots were successfully identified by matrix-associated laser desorption ionization mass spectroscopy (MALDI-MS) and this was followed by quantification of twenty three proteins of the pathway. The results indicate that all but two proteins exhibited no apparent alterations in their pattern of expression. Proteasome zeta chain, an alpha subunit of the 20S proteasome (P < 0.05) and ubiquitin carboxy-terminal hydrolase T (Isopeptidase T), a deubiquitinating enzyme (P < 0.001) were significantly increased in fetal DS compared to controls. Whilst the expression of proteasome iota (n = 9, r = -0.9489, P = 0.0004) and proteasome epsilon (n = 9, r = -0.7227, P = 0.0311) chains was decreased with age in fetal DS brain, no significant correlation was obtained in the other proteins with age. The data suggest that such selective upregulation may have relevance to the developmental abnormalities that characterize this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn JY, Hong SO, Kwak KB, Kang SS, Tanaka K, Ichihara A, Ha DB, Chung CH (1991) Developmental regulation of proteolytic activities and subunit pattern of 20S proteasome in chick embryo muscle. J Biol Chem 266: 15746–15749

    PubMed  CAS  Google Scholar 

  • Amerik A Yu, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M (1997) In vivo disassembly of free polyubiquitin chains by yeast Ubp 14 modulates rates of protein degradation by the proteasome. EMBO J 16: 4826–4838

    Article  PubMed  CAS  Google Scholar 

  • An WG, Hwang SG, Trepel JB, Blagosklonny MV (2000) Protease inhibitor induced apoptosis: accumulation of p53, p21/WAF-l/CIPl and induction of apoptosis are independent marker of proteasome inhibition. Leukemia 14: 1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Berndt P, Hobohm U, Langen H (1999) Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20: 3521–3526

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Castagne V, Gautschi M, Lefevre K, Posada A, Clarke PG (1999) Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog Neurobiol 59: 397–423

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Schwartz AL (1994) The ubiquitin mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J 8: 182–191

    PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847

    Article  PubMed  CAS  Google Scholar 

  • DeMartino GN, Orth K, McCullough ML, Lee LW, Munn TZ, Moomaw CR, Dawson PA, Slaughter CA (1991) The primary structures of four subunits of the human high molecular weight proteinase, macropain (proteasome) are distinct but homologous. Biochim Biophys Acta 1079: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (1995) Down Syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn, vol 1. McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix assisted laser desorption ionization mass spectrometry following in-gel digestion in low salt, non-volatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Früh K, Gossen M, Wang K, Bujard H, Peterson PA, Yang Y (1994) Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J 13: 3236–3244

    PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 Ã… resolution. Nature 386: 463–471

    Article  PubMed  CAS  Google Scholar 

  • Hadari T, Warms JV, Rose IA, Hershko A (1992) A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation. J Biol Chem 267: 719–727

    PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a program. Trends Biochem Sci 2: 96–102

    Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin dependent protein degradation. Ann Rev Genet 30: 405–439

    Article  PubMed  CAS  Google Scholar 

  • Jentsch S, Schlenker S (1995) Selective protein degradation: a journey’s end within the proteasome. Cell 82: 881–884

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000a) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75: 436–439

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Huang FF, Markesbery WR (2000b) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neurosci 98: 149–156

    Article  CAS  Google Scholar 

  • Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A (1990) Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 87: 7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Röder D, Juranville JF, Fountoulakis M (1997) Effect of the protein application mode and the acrylamide concentration on the resolution of protein spots separated by two dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37: 3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auberger G, Leube B, Ulm G, Mezey E, et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395: 451–452

    Article  PubMed  CAS  Google Scholar 

  • McNaught KStP, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Johnson AD (1996) A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell 86: 667–677

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360: 597–599

    Article  PubMed  CAS  Google Scholar 

  • Naviglio S, Matteucci C, Matoskova B, Nagase T, Nomura N, Di Fiore PP, Draetta GF (1998) UBP Y: a growth regulated human ubiquitin isopeptidase. EMBO J 17: 3241–3250

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K (1999) 4-OH-2-nonenal mediated impairment of intracellular proteolysis during oxidative stress. J Biol Chem 274: 23787–23793

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (1994) Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 19: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJA, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335: 637–642

    PubMed  CAS  Google Scholar 

  • Reinheckel T, Ullrich O, Sitte N, Grune T (2000) Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys 377: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Rivett AJ (1998) Intracellular distribution of proteasomes. Curr Opin Immunol 10:110–114

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BL (1999) The Down syndrome critical region. J Neural Transm 57: 41–60

    CAS  Google Scholar 

  • Wilkinson KD, Tashayev VL, O’Connor LB, Larsen CL, Kasperek E, Pickart CM (1995) Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34: 14535–14546

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Carrol M, Papa FR, Hochstrasser M, D’Andrea AD (1996) DUB-1, a deubiquitinating enzyme with growth suppressing activity. Proc Natl Acad Sci USA 93: 3275–3279

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag/Wien

About this chapter

Cite this chapter

Engidawork, E., Juranville, JF., Fountoulakis, M., Dierssen, M., Lubec, G. (2001). Selective upregulation of the ubiquitin-proteasome proteolytic pathway proteins, proteasome zeta chain and isopeptidase T in fetal Down syndrome. In: Lubec, G. (eds) Protein Expression in Down Syndrome Brain. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6262-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6262-0_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83704-7

  • Online ISBN: 978-3-7091-6262-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics