Advertisement

Interactions among structural proteins of varicella zoster virus

  • M. Spengler
  • N. Niesen
  • C. Grose
  • W. T. Ruyechan
  • J. Hay
Conference paper

Summary

Varicella zoster virus tegument components include the regulatory proteins 1E4, 1E62, 1E63 and the ORF10 protein, a protein kinase (ORF47) and an abundant protein encoded in ORF9 which is the homolog of HSV VP22. The kinase is able to phosphorylate 1E62 and the ORF9 protein specifically in viral particles. We show that interactions among these proteins are, at least in part, dependent on the presence or absence of phosphate groups and we suggest models for tegument formation and for its dissolution in the infected cell.

Keywords

Herpes Simplex Virus Herpes Zoster Varicella Zoster Virus Maltose Binding Protein ORF9 Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen JI, Heffel D, Seidel K (1993) The transcriptional activation domain of VZV open reading frame 62 protein is not conserved with its HSV homolog. J Virol 66: 4226–4251Google Scholar
  2. 2.
    Cohen JI, Straus SE (1996) Varicella zoster virus and its replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B (eds) Fields Virology, 3rd ed. Lippincott-Raven, Philadelphia, pp 2525–2545Google Scholar
  3. 3.
    Elliot G, Mouzakitis G, O’Hare P (1995) VP16 interacts via its activation domain with VP22, a tegument protein of HSV and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol 69: 7932–7941Google Scholar
  4. 4.
    Elliot G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88: 223–233CrossRefGoogle Scholar
  5. 5.
    Farrant JL, O’Connor JL (1949) Elementary bodies of varicella and herpes zoster. Nature 163: 260–263PubMedCrossRefGoogle Scholar
  6. 6.
    Gershon AA, LaRussa P, Hardy I, Steinberg S, Silverstein S (1992) Varicella vaccine: The American experience. J Infect Dis 166 [Suppl 1]: 63–68CrossRefGoogle Scholar
  7. 7.
    Kinchington PR, Hougland JK, Arvin AM, Ruyechan WT, Hay J (1992) The VZV immediate early protein 1E62 is a major component of the virus particle. J Virol 66: 359–366PubMedGoogle Scholar
  8. 8.
    Kinchington PR, Bookey D, Turse SE (1995) The transcriptional regulatory proteins encoded by VZV open reading frames 4 and 63 but not 61 are associated with purified virus particles. J Virol 69: 4272–4282Google Scholar
  9. 9.
    Moffat J, Zerboni L, Sommer M, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1998) The ORF47 and ORF66 putative protein kinases of VZV determine the tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci USA 95: 11969–11974PubMedCrossRefGoogle Scholar
  10. 10.
    Perera LP, Mosca J, Ruyechan WT, Hay J (1992) Regulation of VZV gene expression in human T lymphocytes. J Virol 66: 5298–5204PubMedGoogle Scholar
  11. 11.
    Perera LP, Mosca J, Ruychean WT, Hayward GS, Straus SE, Hay J (1993) A major transactivator of VZV, the immediate early protein 1E62, contains a potent N-terminal activation domain. J Virol 67: 4474–4483PubMedGoogle Scholar
  12. 12.
    Perera LP (2000) The TATA motif specifies the differential activation of minimal promoters by VZV immediate early regulatory protein 1E62. J Biol Chem 275: 487–496PubMedCrossRefGoogle Scholar
  13. 13.
    Stevenson D, Xue M, Hay J, Ruyechan WT (1996) Phosphorylation and nuclear localization of the VZV gene63 protein. J Virol 70: 658–662PubMedGoogle Scholar
  14. 14.
    Straus SE, Reinhold W, Smith HA (1984) Endonuclease analysis of viral DNAs from varicella and subsequent zoster infections in the same patient. N Eng J Med 311: 1362–1364CrossRefGoogle Scholar
  15. 15.
    Takahashi M, Okuno Y, Otsuka T, Osama J, Takamizawa A, Sasaha T, Kubo T (1975) Development of a live attenuated varicella vaccine. Biken J 18: 25–33PubMedGoogle Scholar
  16. 16.
    Tournier P, Cathala F, Bernhard W (1957) Ultrastructure et developpement intracellulaire du virus de la varicelle observe au microscope electronique. Presse Med 65: 1229–1234PubMedGoogle Scholar
  17. 17.
    Towbin H, Gordan J (1984) Immunoblotting and dot immunoblotting — current status and outlook. J Immunol Methods 72: 313–315PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou ZH, Chen DH, Jakana J, Rixon F, Chiu W (1999) Visualization of tegument-capsid interactions and DNA in intact HSV type 1 capsids. J Virol 73: 3210–3218PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • M. Spengler
    • 1
    • 3
  • N. Niesen
    • 1
  • C. Grose
    • 2
  • W. T. Ruyechan
    • 1
  • J. Hay
    • 1
    • 4
  1. 1.Department of Microbiology and Witebsky Center for Microbial Pathogenesis and ImmunologyState University of New York at BuffaloBuffaloUSA
  2. 2.Department of PediatricsUniversity of IowaIowa CityUSA
  3. 3.Roswell Park Cancer InstituteBuffaloUSA
  4. 4.Department of Microbiology and Witebsky Center for Microbial Pathogenesis and ImmunologyState University of New York at BuffaloBuffaloUSA

Personalised recommendations