Cis and trans elements regulating expression of the varicella zoster virus gI gene

  • H. He
  • D. Boucaud
  • J. Hay
  • W. T. Ruyechan


We have identified cis-and trans-acting elements involved in the VZV 1E62 protein-activated expression of the varicella zoster virus (VZV) gene which encodes the viral gI glycoprotein. The cis-acting elements include a non-canonical TATA box and a novel 19 base pair sequence located just upstream of the TATA element designated the “activating upstream sequence” or AUS. The AUS is a movable element and its presence results in 1E62 activation of a chimeric promoter consisting of the VZV gC TATA box and the gI AUS. We have also determined that the VZV ORF 29 protein modulates the regulatory activity of the 1E62 protein at the gI promoter. In combination with the 1E62 transactivator, it yields a 10 to 15-fold increase in expression over the levels seen with the 1E62 protein alone in T lymphocytes. The upmodulatory activity requires the presence of a 40 base pair sequence, designated the 29RE, which maps between positions -220 and -180 in the gI promoter. In this paper we review these and earlier findings from our laboratories concerning the regulation of the gI promoter.


Varicella Zoster Virus Chloramphenicol Acetyl Transferase Immediate Early Activate Upstream Sequence Cellular Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucaud D (1999) The varicella zoster virus open reading frame 29 protein: its role as a modulator of viral transcription. Ph.D. Thesis, SUNY at Buffalo, Buffalo, NYGoogle Scholar
  2. 2.
    Boucaud D, Yoshitake H, Hay J, Ruyechan WT (1998) The VZV ORF 29 protein acts as a modulator of a late VZV gene promoter. J Infect Dis 178 [Suppl 1]: 34–38CrossRefGoogle Scholar
  3. 3.
    Croen KD, Ostrove JM, Dragovic LI, Straus SE (1988) Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella zoster and herpes simplex viruses. Proc Natl Acad Sci USA 85: 9773–9777PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen JI, Nguyen H (1997) Varicella zoster virus glycoprotein I is essential for growth of Virus in Vero cells. J Virol 71: 6913–6920PubMedGoogle Scholar
  5. 5.
    Cohen JI, Straus SE (1996) Varicella zoster virus and its replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2525–2545Google Scholar
  6. 6.
    Cohrs RJ, Barbour M, Gilden DH (1996) Varicella zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21,29,62, and 63 in a cDNA library enriched for VZV RNA. J Virol 70: 2789–2796PubMedGoogle Scholar
  7. 7.
    Cohrs RJ, Barbour MB, Mahalingam R, Wellish M, Gilden DH (1995) Varicella zoster virus (VZV) transcription during latency in human ganglia: prevalence of VZV gene 21 transcripts in latently infected human ganglia. J Virol 69: 2674–2678PubMedGoogle Scholar
  8. 8.
    Debrus S, Sadzot-Delvaux C, Nikkels AF, Piette J, Rentier B (1995) Varicella zoster virus gene 63 encodes an immediate early protein that is abundantly expressed during latency. J Virol 69: 3240–3245PubMedGoogle Scholar
  9. 9.
    Defechereux P, Melen L, Baudoux L, Merville-Louis M-P, Rentier B, Piette J (1993) Characterization of the regulatory functions of the varicella zoster virus open reading frame 4 gene product. J Virol 67: 4379–4385PubMedGoogle Scholar
  10. 10.
    Disney GH, McKee TA, Preston CM, Everett RD (1990) The product of varicella zoster gene 62 autoregulates its own promoter. J Gen Virol 71: 2999–3003PubMedCrossRefGoogle Scholar
  11. 11.
    Davison AJ, Scott JE (1986) The complete DNA sequence varicella zoster virus. J Gen Virol 67: 2237–2242Google Scholar
  12. 12.
    Folks T, Benn S, Rabson A, Theodore T, Hoggan MD, Martin M, Lightfoote M, Sell K (1985) Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci USA 82: 4539–4543PubMedCrossRefGoogle Scholar
  13. 13.
    Gao M, Knipe DM (1991) Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J Virol 65: 2666–2675PubMedGoogle Scholar
  14. 14.
    Godowski PJ, Knipe DM (1983) Mutations in the major DNA-binding protein of herpes simplex virus type 1 result in increased levels of viral gene expression. J Virol 47: 478–486PubMedGoogle Scholar
  15. 15.
    Graham FL, Van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467PubMedCrossRefGoogle Scholar
  16. 16.
    Greaves RF, O’Hare P (1991) Sequence, function, and regulation of the Vmw65 gene of herpes simplex type 2. J Virol 65: 6705–6713PubMedGoogle Scholar
  17. 17.
    Greene LA, Aletta JM, Rukenstein A, Green SH (1987) PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods Enzymol 147: 207–216PubMedCrossRefGoogle Scholar
  18. 18.
    Grose C (1990) Glycoproteins encoded by varicella zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Ann Rev Microbiol 44: 59–80CrossRefGoogle Scholar
  19. 19.
    Hay J, Ruyechan WT (1994) Varicella zoster virus — a different kind of herpesvirus latency? Semin Virol 5: 241–247CrossRefGoogle Scholar
  20. 20.
    Jackers P, Defechereux P, Baudoux L, Lambert C, Massaer M, Merville-Louis MP, Rentier B, Piette J (1992) Characterizations of regulatory functions of the varicella zoster virus gene-63 encoded protein. J Virol 66: 3899–3903PubMedGoogle Scholar
  21. 21.
    Janson L, Bark C, Pettersson U (1987) Identification of proteins interacting with the enhancer of human U2 small nuclear RNA genes. Nucleic Acids Res 15: 4997–5016PubMedCrossRefGoogle Scholar
  22. 22.
    Kantakamalakul W (1994) Varicella zoster virus promoter sequences. PhD Thesis, University of the Health Sciences, BethesdaGoogle Scholar
  23. 23.
    Kantakamalakul W, Ruyechan WT, Hay J (1995) Analysis of varicella zoster virus Promoter sequences. Neurology 45 [Suppl 8]: 28–29CrossRefGoogle Scholar
  24. 24.
    Kimura H, Straus SE, Williams RK (1997) Varicella zoster virus glycoproteins E and I expressed in insect cells form a heterodimer that requires the N-terminal of glycoprotein I. Virology 233: 382–391PubMedCrossRefGoogle Scholar
  25. 25.
    Kinchington PR, Inchuaspe G, Subak-Sharpe JH, Robey F, Hay J, Ruyechan WT (1988) Identification and characterization of a varicella zoster virus DNA-binding protein by using antisera against a predicted synthetic oligopeptide. J Virol 62: 802–809PubMedGoogle Scholar
  26. 26.
    Kost RG, Kupinsky H, Straus SE (1995) Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209: 218–224PubMedCrossRefGoogle Scholar
  27. 27.
    Lania L, Majello B, De Luca P (1997) Transcriptional regulation by the Sp family proteins. Int J Biochem Cell Biol 29: 1313–1323PubMedCrossRefGoogle Scholar
  28. 28.
    Ling PD, Kinchington PR, Ruyechan WT, Hay J (1990) A detailed transcriptional analysis of varicella zoster virus gene 14 (glycoprotein V). Virology 184: 625–635CrossRefGoogle Scholar
  29. 29.
    Ling P, Kinchington PR, Ruyechan WT, Hay J (1992) Transcription from varicella-zoster virus gene 67 (glycoprotein IV). J Virol 66: 3690–3698PubMedGoogle Scholar
  30. 30.
    Litwin V, Jackson W, Grose C (1992) Receptor properties of two varicella zoster virus glycoproteins gpl and gpIV homologous to herpes simplex virus gE and gI. J Virol 66: 3643–3651PubMedGoogle Scholar
  31. 31.
    Locker J, Buzard G (1990) A dictionary of transcription control sequences. J DNA Seq Map 1: 3–11Google Scholar
  32. 32.
    Lungu O, Panagiotidis CA, Annunziato PA, Gershon AA, Silverstein SJ (1998) Aberrant Intracellular localization of varicella zoster virus regulatory proteins during latency. Proc Natl Acad Sci USA 93: 2122–2124Google Scholar
  33. 33.
    Mallory S, Sommer M, Arvin AM (1997) Mutational analysis of the role of glycoprotein I in varicella zoster virus replication and its effects on glycoprotein E conformation and trafficking. J Virol 71: 8279–8288PubMedGoogle Scholar
  34. 34.
    Meier JL, Luo X, Sawadogo M, Straus SE (1994) The cellular transcription factor USF cooperates with varicella-zoster virus immediate early protein 62 to symmetrically activate a bidirectional promoter. Mol Cell Biol 14: 6896–6906PubMedGoogle Scholar
  35. 35.
    Michael EJ, Kuck KM, Kinchington PR (1998) Anatomy of the varicella-zoster virus open reading frame 4 promoter. J Infect Dis 178 [Suppl 1]: 27–33CrossRefGoogle Scholar
  36. 36.
    Moriuchi H, Moriuchi M, Straus SE, Cohen JI (1993) Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67: 2739–2746PubMedGoogle Scholar
  37. 37.
    Moriuchi H, Moriuchi M, Straus SE, Cohen JI (1993) Varicella-zoster virus (VZV) open reading frame 61 protein transactivates VZV gene promoters and enhances the infectivity of VZV DNA. J Virol 67: 4290–4295PubMedGoogle Scholar
  38. 38.
    Olson JK, Grose C (1998) Complex formation facilitates endocytosis of the varicella zoster GE:gI receptor. J Virol 72: 1542–1551PubMedGoogle Scholar
  39. 39.
    Osborne TF, Gil G, Brown MS, Kowal RC, Goldstein JL (1987) Identification of promoter elements required for in vitro transcription of hamster 3-hydroxymethylglutaryl coenzyme A reductase gene. Proc Natl Acad Sci USA 84: 3614–3618PubMedCrossRefGoogle Scholar
  40. 40.
    Ostrove JM, Reinhold W, Fan C-M, Zorn S, Hay J, Straus SE (1985) Transcription mapping of the varicella zoster virus genome. J Virol 56: 600–606PubMedGoogle Scholar
  41. 41.
    Perera LP, Kaushal S, Kinchington PR, Mosca JD, Hayward GS, Straus SE (1994) Varicella-Zoster virus open reading frame (ORF) 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homolog ICP27. J Virol 68: 2468–2477PubMedGoogle Scholar
  42. 42.
    Perera LP, Mosca JD, Ruyechan WT, Hay J (1992) Regulation of varicella zoster gene expression in human T lymphocytes. J Virol 66: 5298–5304PubMedGoogle Scholar
  43. 43.
    Perera LP, Mosca JD, Zadeghi-Zadeh M, Ruyechan WT, Hay J (1992) The varicella zoster virus immediate early protein 1E62 can positively regulate its cognate promoter. Virology 191: 346–354PubMedCrossRefGoogle Scholar
  44. 44.
    Perera LP, Mosca JD, Ruyechan WT, Hayward GS, Straus SE, Hay J (1993) A major transactivator of varicella zoster virus, the immediate early protein, 1E62, contains a potent — terminal activator domain. J Virol 67: 4474–4483PubMedGoogle Scholar
  45. 45.
    Rahaus M, Wolff MH (1999) Influence of different cellular transcription factors on the regulation of varicella-zoster virus glycoproteins E (gE) and I (gI) UTR’s activity. Virus Res 62 [SI 1]: 77–88PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts CR, Weir AC, Straus SE, Hay J, Ruyechan WT (1985) DNA-binding proteins present in varicella zoster virus infected cells. J Virol 55: 45–53PubMedGoogle Scholar
  47. 47.
    Ruyechan WT, Hay J (1999) Varicella zoster virus: molecular biology. In: Webster RG, Granoff A (eds) Encyclopedia of virology, 2nd ed. Academic Press, London, pp 1878–1884CrossRefGoogle Scholar
  48. 48.
    Sawadogo M (1988) Multiple forms of the human gene specific transcription factor USF II. DNA binding properties and transcriptional activity of the purified HeLa USF. J Biol Chem 263: 11994–12001PubMedGoogle Scholar
  49. 49.
    Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43: 165–175PubMedCrossRefGoogle Scholar
  50. 50.
    Tyler JK, Everett RD (1993) The DNA binding domain of the varicella zoster virus gene 62 protein interacts with multiple sequences which are similar to the binding site of the related protein of herpes simplex virus type 1. Nucleic Acids Res 21: 513–522PubMedCrossRefGoogle Scholar
  51. 51.
    Wu C-L, Wilcox KW (1991) The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J Virol 65: 1149–1159PubMedGoogle Scholar
  52. 52.
    Ye M, Duus KM, Peng J, Price DH, Grose C (1999) Varicella-zoster virus Fc receptor component gI is phosphorylated on its endodomain by a cyclin-dependent kinase. J Virol 73: 1320–1330PubMedGoogle Scholar
  53. 53.
    Wietstock SM, Holmes AM, Ruyechan WT (1988) Identification and characterization of a DNA primase activity present in herpes simplex virus infected cells. J Virol 62: 1038–1045PubMedGoogle Scholar
  54. 54.
    Zijderveld DC, d’Adda di Fagnana F, Giacca M, Timmers HT, van der Vliet PC (1994) Stimulation of the adenovirus major late promoter in vitro by transcription factor USF is enhanced by the adenovirus DNA binding protein. J Virol 68: 8288–8295PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • H. He
    • 1
  • D. Boucaud
    • 2
  • J. Hay
    • 1
  • W. T. Ruyechan
    • 1
    • 3
  1. 1.Department of Microbiology and Markey Center for Microbial PathogenesisState University of New York at BuffaloBuffaloUSA
  2. 2.Department of Molecular Genetics, M.D. Anderson Cancer CenterUniversity of TexasHoustonUSA
  3. 3.Department of MicrobiologyState University of New York at BuffaloBuffaloUSA

Personalised recommendations