In vitro measurement of human T cell responses to varicella zoster virus antigen

  • A. R. Hayward
Conference paper


Means to quantitate cell-mediated immunity are increasingly in demand as modifications to existing vaccines and new vaccines are tested. For immunity to varicella zoster virus, there is over a decade of experience with estimates of responder cell frequency obtained by diluting the number of lymphocytes in antigen-stimulated cultures. This method shows substantial variations between subjects, so populations of 12 or more subjects per group are needed to make comparisons possible. Cytokine-based methods for T lymphocyte responses may prove more sensitive, as may direct antigen-binding methods using tetramers of peptide and histocompatibility antigens — but experience with both is very limited.


Herpes Zoster Varicella Zoster Virus Histocompatibility Antigen Varicella Zoster Virus Vaccine Tetramer Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arvin AM, Kinney-Thomas E, Shriver K, Grose C, Koropchak CM, Scranton E, Wittek AE, Diaz PS (1900) Immunity to varicella zoster virus glycoproteins gp 1 (90/58) and gp III (gp 118) and to a non-glycosylated protein, p170. J Immunol 137: 1346–1351Google Scholar
  2. 2.
    Arvin AM (1996) Immune responses to varicella-zoster virus. Infect Dis Clin North Am 10: 529–570PubMedCrossRefGoogle Scholar
  3. 3.
    Butz EA, Bevan MJ (1998) Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8: 167–175PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen JI (1998) Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. J Infect Dis 177: 1390–1393PubMedCrossRefGoogle Scholar
  5. 5.
    Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8: 683–691PubMedCrossRefGoogle Scholar
  6. 6.
    Hayward A, Levin M, Wolf W, Angelova G, Gilden D (1991) Varicella-zoster virus-specific immunity after herpes zoster. J Infect Dis 163: 873–875PubMedCrossRefGoogle Scholar
  7. 7.
    Hayward AR, Buda K, Jones M, White CJ, Levin MJ (1996) Varicella zoster virus-specific cytotoxicity following secondary immunization with live or killed vaccine. Viral Immun 9: 241–245CrossRefGoogle Scholar
  8. 8.
    Hayward AR (1990) T cell response to predicted amphipathic peptides of varicella zoster virus glycoproteins II and IV. J Virol 64: 651–655PubMedGoogle Scholar
  9. 9.
    Hayward AR, Zerbe GO, Levin MJ (1994) Clinical application of responder cell frequency estimates with four years of follow up. J Immunol Methods 170: 27–36PubMedCrossRefGoogle Scholar
  10. 10.
    Hayward A, Giller R, Levin M (1989) Phenotype, cytotoxic and helper functions of T cells from varicella zoster virus stimulated cultures of human lymphocytes. Viral Immun 2: 175–181CrossRefGoogle Scholar
  11. 11.
    Hayward AR, Pontesilli O, Herberger M, Lazslo M, Levin M (1986) Specific lysis of VZV infected B lymphoblasts by human T cells. J Virol 58: 179–184PubMedGoogle Scholar
  12. 12.
    Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off TAP to evade host immunity. Nature 375: 411–415PubMedCrossRefGoogle Scholar
  13. 13.
    Jenkins DE, Redman RL, Lam EM, Liu C, Lin I, Arvin AM (1998) Interleukin (IL)-10, IL-12, and interferon-gamma production in primary and memory immune responses to varicella-zoster virus. J Infect Dis 178: 940–948PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins DE, Yasukawa LL, Benike CJ, Engleman EG, Arvin AM (1998) Isolation and utilization of human dendritic cells from peripheral blood to assay an in vitro primary immune response to varicella-zoster virus peptides. J Infect Dis 178 [Suppl 1]: 39–42CrossRefGoogle Scholar
  15. 15.
    Jenkins DE, Yasukawa LL, Bergen R, Benike C, Engleman EG, Arvin AM (1999) Comparison of primary sensitization of naive human T cells to varicella-zoster virus peptides by dendritic cells in vitro with responses elicited in vivo by varicella vaccination. J Immunol 162: 560–567PubMedGoogle Scholar
  16. 16.
    Kawano S, Terada K, Hiraga Y, Morita T (1996) Immunogenicity of the whole antigen and glycoprotein I of varicella-zoster virus (VZV) and the VZV skin test antigen. Acta Paediatr Jpn 38: 121–123PubMedCrossRefGoogle Scholar
  17. 17.
    Larsson M, Jin X, Ramratnam B, Ogg GS, Engelmayer J, Demoitie MA, McMichael AJ, Cox WI, Steinman RM, Nixon D, Bhardwaj N (1999) A recombinant vaccinia virus based ELISPOT assay detects high frequencies of Pol-specific CD8 T cells in HIV-1-positive individuals. AIDS 13: 767–777PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y, Wehner RH, Zhao M, Nielsen PJ (1997) Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 185: 251–262PubMedCrossRefGoogle Scholar
  19. 19.
    Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177–187PubMedCrossRefGoogle Scholar
  20. 20.
    Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, Segal JP, Cao Y, Rowland-Jones SL, Cerundolo V, Hurley A, Markowitz M, Ho DD, Nixon DF, McMichael AJ (1998) Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279: 2103–2106PubMedCrossRefGoogle Scholar
  21. 21.
    Ogg GS, McMichael AJ (1999) Quantitation of antigen-specific CD8–1- T-cell responses. Immunol Lett 66: 77–80PubMedCrossRefGoogle Scholar
  22. 22.
    Pontesilli O, Carotenuto P, Levin MJ, Suez DJ, Hayward AR (1987) Processing and presentation of cell-associated varicella zoster antigens by human moncytes. Clin Exp Immunol 70: 127–135PubMedGoogle Scholar
  23. 23.
    Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478PubMedCrossRefGoogle Scholar
  24. 24.
    Rose DN, Schechter CB, Adler JJ (1995) Interpretation of the tuberculin skin test. J Gen Int Med 10: 635–642CrossRefGoogle Scholar
  25. 25.
    Sadzot-Delvaux C, Arvin AM, Rentier B (1998) Varicella-zoster virus 1E63, a virion component expressed during latency and acute infection, elicits humoral and cellular immunity. J Infect Dis 178 [Suppl 1]: 43–47CrossRefGoogle Scholar
  26. 26.
    Stevenson PG, Doherty PC (1998) Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72: 943–949PubMedGoogle Scholar
  27. 27.
    Takahashi M, Iketani T, Sasada K, Hara J, Kamiya H, Asano Y, Baba K, Shiraki K (1992) Immunization of the elderly and patients with collagen vascular diseases with live varicella vaccine and use of varicella skin antigen. J Infect Dis 166 [Suppl 1]: 58–62CrossRefGoogle Scholar
  28. 28.
    Van Oers MH, Pinkster J, Zeujlemaker WP (1978) Quantification of antigen-reactive cells among human T lymphocytes. Eur J Immunol 8: 477–484PubMedCrossRefGoogle Scholar
  29. 29.
    Zaia JA, Leary PL, Levin MJ (1978) Specificity of the blastogenic response of human mononuclear cells to herpesvirus antigens. Infect Immun 20: 646–651PubMedGoogle Scholar
  30. 30.
    Zhang Y, Cosyns M, Levin MJ, Hayward AR (1994) Cytokine production in varicella zoster virus stimulated limiting dilution lymphocyte cultures. Clin Exp Immunol 98: 128–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • A. R. Hayward
    • 1
  1. 1.Department of Pediatrics and ImmunologyUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations